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CHAPTER 1

INTRODUCTION

In fluid mechanics, the Navier Stokes system for a compressible fluid is a system of nonlinear partial
differential equations that describe the motion of a fluid through the study of its velocity field, its
density and its internal energy. This system was introduced after the observations of Euler in the
middle of the 18th century and of Navier in 1827, Poisson in 1829 and Stokes in 1845 [24]. Until
now, a complete theory on the solvability and stability, mainly in two and three space dimension,
has not yet be found despite being the focus of many researchers such as Solonnikov, P.L Lions,
E. Feireisl, Matsumura, Nishida, etc.

In one dimensional space, the qualitative properties of this system are better understood. For
instance, when the viscosity is constant, existence and uniqueness of classical solution associated to
the Navier Stokes system with regular initial data was obtained in the 60’s thanks to the works of
Kanel [15], Kazhikhov [16] and the Russian school [1]. Likewise, in [10, 11, 14], David Hoff proved
the existence of global weak solutions with initial density admitting shocks (discontinuities), we
refer also to the works of Serre [23, 22]. When the viscosity is not constant, existence and uniqueness
of classical solution for the Cauchy problem associated to the Navier Stokes with regular initial
data was obtained by Mellet and Vasseur [19], Haspot [9], Constantin and al [6] and Burtea, Haspot
[4], whereas weak solutions with discontinuous density are recently obtained by Burtea, Haspot [5].
In their recent work [2], Bresch, Perrin and Zatorska justified mathematically the derivation of the
viscous free/congested zones two-phase model from the Navier Stokes system for a compressible
isentropic fluid with a singular pressure. In order to handle it, the authors study the Navier Stokes
system in one space dimension with singular pressure and with initial data belonging to H1(0, 1),
in particular continuous. Motivated by this work, we want to know if regularity on the initial data
can be reduced. Our goal is to seek if it is possible to obtain a weak solution of the Navier Stokes
system assuming a Lebesgue conditions on initial date. In particular, the initial density may be
discontinuous. The remainder of this document is structured as follows:

• in the first chapter we begin by recalling the physical principles being behind the Navier
Stokes system for compressible fluid at constant temperature for the one dimensional prob-
lem. In a second time, we will introduce the mass-Lagrangian formulation.

• In the second one, we study the local theory for regular initial data of the Navier Stokes
system with singular pressure. In fact, having proved the existence and uniqueness of local
strong solution, we deal with the long time existence of the local solution.

Singular pressures in the mechanics of compressible fluids 2



Chapter 1. Introduction

• In the third chapter, one proves the global well-posedness of classical solution of the Navier
Stokes system with a particular singular pressure law. One supposes that the initial density
is away from zero and the singularity point of the pressure.

• In the last chapter, we construct a weak solution of the Navier Stokes system with singular
pressure by assuming that the initial energy is small and the initial density is far from vacuum
and the singularity point of the pressure. The classical energy estimate leads to the fact that
the weak velocity u is just L2

loc(R+, H1(T1)) which does not allow us to define formally the
flow associated to the velocity u. Using techniques introduced by Hoff in [11, 12], we recover
that ∂xu ∈ L1

loc(R+, L∞(T1)). That is sufficient to justify the global well-posedness of the
flow associated to the velocity u and helps to understand more the transport equation in the
case of discontinuous initial density.

3 Singular pressures in the mechanics of compressible fluids



CHAPTER 2

PRESENTATION OF THE MODEL

In this chapter, we first establish the Navier Stokes system from the point of view of physics. In
a second time, we will discuss the mass-Lagrangian change of variable, which is a feature of the
Navier Stokes system in one space dimensional.

2.1 Navier Stokes system
The motion of a fluid at constant temperature is described by a system of two evolutionary equa-
tions called the Navier Stokes system : the first equation is called the mass conservation equation.
It comes from the fact that in any evolving volume, the mass is conserved : the fluid is advected.
The second one, called momentum equation is a simple application of the Newton’s second law.
In what follows we recall the physical considerations that lead to the two equations.

We consider a fluid of density ρ and velocity u in motion with a constant temperature and we
introduce the flow of u :

Xt(x) = x+

∫ t

0

u(s,Xs(x)ds.

Let V be a fluid element driven by the flow Xt. Mass of fluid in Xt(V ) is :

m(Xt(V )) =

∫
Xt(V )

ρ(t, x)dx.

As V is advected with the velocity u, the quantity of mass of fluid contained in the material volume
Xt(V ) being constant over time, one has :

d

dt
m(Xt(V )) = 0.

Then applying the Liouville transport equation Theorem A.1.1, one has :

d

dt
m(Xt(V )) =

∫
Xt(V )

(∂tρ+ div (ρu)) (t, x)dx = 0.

This relation being true for any element of volume V then, one obtains the mass conservation
equation

∂tρ+ div (ρu) = 0. (2.1)

Singular pressures in the mechanics of compressible fluids 4



2.1. Navier Stokes system Chapter 2. Presentation of the model

Now, we apply Newton’s second law which reads as follows : the rate of change of the total
momentum of an element of fluid occupying a domain Xt(V ) at each time is equal to force acting
on Xt(V ). To apply this law, one must take into account of all the forces acting on Xt(V ). There
are of two types : stress forces and external or body forces. As the name suggests, contact forces
characterise the contact interaction between material elements. They depend on the rheology of
the fluid. If σ is the stress tensor, ~n the unit normal vector field on ∂Xt(V ) and ds the surface
element of ∂Xt(V ), contact forces acting on Xt(V ) is given by :∫

∂Xt(V )

σ(t, x) · ~n(t, x)ds =

∫
Xt(V )

div (σ)(t, x)dx.

Exterior forces are those acted by external system. They can be gravity, friction, etc. If f is the
density of external forces, then external forces acting on Xt(V ) is given by :∫

Xt(V )

f(t, x)dx.

Noting that quantity of momentum in a volume Xt(V ) of fluid is∫
Xt(V )

ρ(t, x)u(t, x)dx

and applying Newton’s second law and performing the transport theorem of Liouville Corol-
lary A.1.1, one obtains :∫

Xt(V )

(∂t(ρu) + div (ρu⊗ u)) (t, x)dx =

∫
Xt(V )

div (σ)(t, x)dx+

∫
Xt(V )

f(t, x)dx.

As this is true for any V then, one obtains the second equation of Navier Stokes system referred
as momentum equation :

∂t(ρu) + div (ρu⊗ u) = div (σ) + f. (2.2)

Gathering (2.1) and (2.2), one concludes that the motion of a compressible fluid with constant
temperature is described by the Navier Stokes system :{

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) = div (σ) + f.

When the temperature is not constant, one has an additional equation for the temperature or
the energy, to describe fully the motion of the fluid.

A fluid is said to be Newtonian if its stress tensor is:

σ = −pId + λ div (u)Id + 2µDu

where p is the pressure of the fluid, λ and µ are called Lamé coefficients and where

Du =
1

2

(
∇u+t ∇u

)

5 Singular pressures in the mechanics of compressible fluids



2.2. Change of variables Chapter 2. Presentation of the model

is the deformation tensor. In general, λ and µ are functions depending on the density and we say
that the fluid is barotropic. If they are constant for a fluid, we say that such fluid is isentropic. We
conclude that for Newtonian, barotropic, isothermal fluid, the Navier Stokes system is written :{

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) +∇P = ∇ (λ div(u)) + µ∆u+ f.
(2.3)

The pressure is a thermodynamic variable that models the interaction between fluid particles.
Particular examples are the following :

1. perfect Gas pressure law : For perfect gas, the pressure is the form P (ρ) = aρ;

2. adiabatic pressure law : P (ρ) = aργ with γ > 1;

3. Van-der-Walls pressure law : P (ρ) =
aρ

1− bρ
+ cρ2.

2.2 Change of variables
In this section, we exploit the structure of the one dimensional Navier Stokes system to obtain
it in new variable, see more details in [1]. We consider the Navier Stokes system for Newto-
nian isothermal and barotropic fluid on the one dimensional torus T1, so with periodic boundary
conditions : {

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu⊗ u) + ∂xP = ∂x(µ∂xu).
(2.4)

Let ρ0 be the initial density satisfying inf
x∈T1

ρ0(x) = α0 > 0. Let us consider the mapping x 7→
1

M

∫ x

0

ρ0(s)ds with M =

∫
T1

ρ0(x)dx. This map is one-to-one on T1 to itself and its inverse

denoted Y satisfies
Y ′(m) =

1

(Y −1)′(Y (m))
=

M

ρ0(Y (m))
.

Suppose that the velocity u ∈ L1
loc(R+, H2(T1)), one can define the flow X(·, x) : R+ → T1

dX

dt
(t, x) = u(t,X(t, x)),

X(0, x) = x.

X is given by the Duhamel formula

X(t, x) = x+

∫ t

0

u(s,X(s, x)ds.

Notation. The mass Lagrangian change of variable is J : (t,m) 7→ (t,X(t, Y (m)). For any func-
tion g : (t, x) 7→ g(t, x), we denote g̃ the function defined by :

g̃(t,m) = g(t,X(t, Y (m)).

6 Singular pressures in the mechanics of compressible fluids



2.2. Change of variables Chapter 2. Presentation of the model

Proposition 2.2.1. For any function g, one has :
∂mg̃(t,m) =

M

ρ0((Y (m))

∂X

∂x
(t, Y (m))∂̃xg(t,m),

∂tg̃(t,m) =
∂̃g

∂t
(t,m) + ũ(t,m)∂̃xg(t,m),

∂x

∂m
=

M

ρ0(Y (m))

∂X

∂x
(t, Y (m)) .

Remark 2.2.1. The new coordinate m is referred as mass-Lagrangian coordinate whereas x is
called Eulerian coordinate. We will write (2.4) into this new coordinate. We begin by the mass
equation (2.4)1.

Using the previous proposition, one has :

∂tρ̃(t,m) = ∂̃tρ(t,m) + ũ(t,m)∂̃xρ(t,m)

but by (2.4)1,
−∂̃tρ(t,m) = ∂̃x(ρu) = ũ(t,m)∂̃xρ(t,m) + ρ̃(t,m)∂̃xu(t,m)

then

∂tρ̃(t,m) = −ρ̃(t,m)∂̃xu(t,m). (2.5)

Furthermore,
d

dt

(
ρ(t,X(t, x))

∂X

∂x
(t, x)

)
= 0

so
1

M
ρ0 (Y (m))

(
∂X

∂x
(t, Y (m))

)−1

= ρ̃(t,m)

and using the previous proposition to express ∂̃xu(t,m) in (2.5), one has

∂tρ̃ = −ρ̃2∂mũ. (2.6)

Moreover, using the third identity of the previous proposition, one notes that

∂x

∂m
=

1

ρ̃(t,m)
. (2.7)

So, in mass-Lagrangian coordinate (2.4)1 is equivalent to the equation (2.6). We turn now to the
momentum equation in mass-Lagrangian coordinate.

Testing (2.4)2 with a smooth function ψ ∈ C0((0,+∞)× T1), one has :∫ T

0

∫
T1

[
ρu∂tψ +

(
ρu2 + P (ρ)− µ(ρ)∂xu

)
∂xψ

]
dtdx = 0.

For ϕ ∈ D((0, T )×T1), one can use ψ = ϕ ◦ J−1 as test function in the above formulation. By
doing like that, and next performing the change of variable J , one obtains :∫ T

0

∫
T1

ũ
[

˜∂t(ϕ ◦X−1) + ũ(t,m) ˜∂x(ϕ ◦X−1)
]

+
[
P (ρ̃)− µ(ρ̃)∂̃xu

]
˜∂x(ϕ ◦X−1)× 1

ρ̃(t,m)
dtdm = 0.

7 Singular pressures in the mechanics of compressible fluids



2.2. Change of variables Chapter 2. Presentation of the model

Next, using Proposition 2.2.1, one obtains :∫ T

0

∫
T1

[∂tũ+ ∂m (P (ρ̃)− µ(ρ̃)ρ̃∂mũ)]ϕdtdm = 0,∀ϕ ∈ D((0, T )× T1)

then, the momentum equation in mass-Lagrangian coordinate is :

∂tũ+ ∂m [P (ρ̃)− µ(ρ̃)ρ̃∂mũ] = 0. (2.8)

Gathering (2.6) and (2.8), one notes that the Navier Stokes system in mass-Lagrangian coor-
dinate is : {

∂tρ̃+ ρ̃2∂mũ = 0,

∂tũ+ ∂m (P (ρ̃)− µ(ρ̃)ρ̃∂mũ) = 0.
(2.9)

Thus setting τ(t,m) =
1

ρ̃(t,m)
called specific volume and v(t,m) = ũ(t,m) we have :

{
∂tτ − ∂mv = 0,

∂tv + ∂m (P (1/τ)− µ(1/τ)τ−1∂mv) = 0.

Remark 2.2.2. This change of variable is only available in one dimension. In higher dimension,
one is satisfied just with the change in Lagrangian coordinate X, for more details, refer to [7].

8 Singular pressures in the mechanics of compressible fluids



CHAPTER 3

LOCAL THEORY FOR REGULAR INITIAL DATA

In this chapter we develop a local theory of the Navier Stokes system with singular pressure. It is
divided into four sections. In the first one, we use a fixed point argument to prove the existence of
local solution of the Navier Stokes system in mass-Lagrangian coordinate, and due to the regularity
of the flow, we deduce the existence of classical solution of the system in Eulerian coordinate. In
the second, we prove the uniqueness of the local solution by proving a � continuity � of the
solution with respect to initial data. In the last section, we prove a blow-up criteria similar to the
one in [4] that to say L∞-norm of the density and its inverse control the higher Sobolev norms of
solutions provided that it is away from the singularity of the pressure.

3.1 Existence of strong solution
We consider the Navier Stokes system :{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + P (ρ)− µ(ρ)∂xu) = 0.

(3.1)

Above, the viscosity µ ∈ C 3([0,+∞)) is a positive function of ρ and the pressure P : [0, ρmax) 7→
R+ ∈ C 3([0, ρmax)), increasing function of ρ satisfies :

lim
s→ρmax

P (s) = +∞. (3.2)

The main result of this section is summarised in the following theorem.

Theorem 3.1.1. Assume that (ρ0, u0) ∈ H2(T1)×H2(T1), the viscosity µ, the pressure P are like
above and that there exists α0 > 0 such that

α0 6 ρ0 6 ρmax − α0.

Then, there exists T > 0, a classical solution

(ρ, u) ∈ C ([0, T ], H2(T1))×
(
C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1))

)
of the Cauchy problem associated to the Navier Stokes system (3.1) with initial data (ρ0, u0).

Singular pressures in the mechanics of compressible fluids 9



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Moreover, there exist two constants η > 0 and C > 0 depending on T , α and on the initial data
such that :

η 6 ρ 6 ρmax − η,

sup
06t6T

{‖ρ(t)‖2
H2(T1) + ‖u(t)‖2

H2(T1)}+

∫ T

0

|∂xu|2H2(T1)} 6 C.

In order to prove Theorem 3.1.1, we will work in mass-Lagrangian coordinate : first, we solve (3.3)
with a fixed point argument and next we pass to the Eulerian coordinate. Let us note that, for
a priori estimates, it is easier to manipulate the Navier Stokes system in mass-Lagrangian rather
than in Eulerian coordinate. For instance, this change of variable makes the mass conservation
equation very easy to solve. To be convinced, we refer to [20], where John Nash showed the
existence of classical solution with Hölder regularity for the Navier Stokes system while working
in Eulerian coordinates. We also refer to [7] where, R. Danchin proved existence of solution with
Besov regularity for the Navier Stokes system while working in Lagrangian coordinates.

We complete the above existence theorem by an extension one, which is stated as follows :

Theorem 3.1.2. Assume that (ρ0, u0) ∈ H2(T1) × H2(T1), the viscosity µ(ρ) = ρθ, θ > 0, the
pressure P is like in (3.2) and that there exists α0 > 0 such that

α0 6 ρ0 6 ρmax − α0.

Let (ρ, u) ∈ (C ([0, T ], H2(T1)))
2 a local solution of the Cauchy problem associated to (3.1) and

initial data (ρ0, u0). If we further assume that there exists C = C(T ) > 0 such that

∀ 0 6 t < T, C(T ) 6 ρ 6 ρmax − C(T )

then the classical solution (ρ, u) can be extended beyond T .

The proof of this theorem is done in section 3.3 of this chapter. It is a direct consequence of the
blow-up criterion of Navier Stokes system in mass-Lagrangian coordinate Theorem 3.3.2.

In consequence, one obtains the following blow-up criterion.

Theorem 3.1.3. Assume that (ρ0, u0) ∈ H2(T1) × H2(T1), the viscosity µ(ρ) = ρθ, θ > 0, the
pressure P is like in (3.2) and that there exists α0 > 0 such that

α0 6 ρ0 6 ρmax − α0.

Let (ρ, u) a local solution of the Cauchy problem associated to (3.1) and initial data (ρ0, u0). Let
T ∗ be the maximal existence time of the solution. If we further assume that

0 < inf
[0,T ∗)×T1

ρ 6 sup
[0,T ∗)×T1

ρ < ρmax

then T ∗ = +∞.

This theorem can be easily deduced from Theorem 3.1.2 by absurd so, for the sake of brevity it
will not be proved.

As we know, in mass-Lagrangian coordinate (3.1) is{
∂tτ − ∂mv = 0,

∂tv + ∂m

(
P̃ (τ)− µ̃(τ)∂mv

)
= 0.

(3.3)

10 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Above, functions P̃ and µ̃ are defined by :

P̃ (τ) = P (1/τ) and µ̃(τ) = τ−1µ(1/τ).

Notation. The linearized problem associated to (3.3) is :{
∂tv − ∂m(V ∂mv) = F,

v(0) = v0

with some functions V and F .

In the following subsection we study the linearized problem associated to (3.3) in order to set up
tools for fixed point theorem in the second subsection.

3.1.1 Study of the linearized problem

Let us consider the linear non-homogeneous parabolic equation

∂tv − ∂m(V ∂mv) = F (3.4)

with V and F two given functions, periodic in space, satisfying :
V (0) ∈ L∞(T1), ∂tV ∈ L1

loc(R+, L∞(T1)),

∂mV ∈ L4
loc(R+, L2(T1)), inf V = V > 0,

F ∈ L2
loc(R+, L2(T1)).

(3.5)

We aim to prove that the Cauchy problem associated to (3.4) with initial data v0 ∈ H2(T1) has
a unique solution with the same regularity as in Theorem 3.1.1, that is to say C (R+, H2(T1)) ∩
L2

loc(R+, H3(T1)). We begin by the following existence and uniqueness theorem :

Theorem 3.1.4. Assume v0 ∈ H1(T1) and V, F satisfy (3.5). Then, there exists a unique v ∈
C (R+, H1(T1))∩L2

loc(R+, H2(T1)) such that ∂tv ∈ L2
loc(R+, L2(T1)), solution of the Cauchy problem{

∂tv − ∂m(V ∂mv) = F,

v(0) = v0.
(3.6)

Moreover, for all T > 0 there is a constant C = C(T, V ) > 0 such that :

‖v‖2
C ([0,T ],H1(T1)) + ‖∂tv‖2

L2((0,T )×T1) + V‖∂mv‖2
L2((0,T ),H1(T1))

6 C
(
‖v0‖2

H1(T1) + ‖F‖2
L2((0,T )×T1)

)
. (3.7)

The constant C is given by

C = C1 exp
(
T + C1‖∂mV ‖4

L4((0,T ),L2(T1))

)
+ max

(
1, ‖V (0)‖L∞(T1)

)
exp

(
‖∂tV ‖L1((0,T ),L∞(T1))

)
(3.8)

where C1 depends only on V.

11 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

It turns out that if we have more information on V , F and the initial data v0, the solution will be
more regular. This result is stated in the following.

Theorem 3.1.5. Assume that functions V and F satisfy (3.5) and also

∂mV ∈ L∞loc(R+, L∞(T1)), ∂mmV ∈ L∞loc(R+, L2(T1)).

If v0 ∈ H2(T1) and F ∈ L2
loc(R+, H1(T1)) then there exists a unique v ∈ C (R+, H2(T1)) ∩

L2
loc(R+, H3(T1)) such that ∂tv ∈ L2

loc(R+, H1(T1)), solution of the Cauchy problem associated
to (3.6) and v0. Moreover for all T > 0, there exists C = C(T, V ) > 0 such that :

‖v‖2
C ([0,T ],H2(T1)) + ‖∂tv‖2

L2((0,T ),H1(T1)) + V‖∂mv‖2
L2((0,T )×H2(T1))

6 C
(
‖v0‖2

H2(T1) + ‖F‖2
L2((0,T ),H1(T1))

)
. (3.9)

We will prove Theorem 3.1.4, with a homotopy argument, we define, for T > 0, two sets X, Y
and function Vθ by :

X = {v ∈ C ([0, T ], H1(T1)) ∩ L2((0, T ), H2(T1)) : ∂tv ∈ L2((0, T )× T1)},

Y = L2((0, T )× (T1))×H1(T1) and Vθ = (1− θ)V + θV θ ∈ [0, 1]

and consider the map :

Πθ : X → Y (3.10)
v 7→ (∂tv − ∂m(Vθ∂mv); v(0)) .

We will show that the set

E = {θ ∈ [0, 1] : Πθ is one-to-one} (3.11)

is at the same time open, closed and nonempty set of [0, 1], thus 1 ∈ E .

Proof of Theorem 3.1.4. Let us begin the proof of Theorem 3.1.4 by a uniqueness property for
equation (3.4).

Theorem 3.1.6. Assume that F ∈ L2((0, T ), H−1(T1)), v0 ∈ L2(T1) and V satisfying (3.5). Then
there exists, in

X = {v ∈ C ([0, T ], L2(T1)) ∩ L2((0, T ), H1(T1)) : ∂tv ∈ L2((0, T ), H−1(T1))}

at most one solution of the Cauchy problem{
∂tv − ∂m (V ∂mv) = F,

v(0) = v0.
(3.12)

Proof. Let v1 and v2 be two solutions of the above equation in X. Obviously, w := v2 − v1 is
solution of the homogeneous equation{

∂tw − ∂m (V ∂mw) = 0,

v(0) = 0.
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As ∂tV ∈ L1((0, T ), L∞(T1)) then V ∈ C ([0, T ], L∞(T1)) and so ∂m(V ∂mv) ∈ L2((0, T ), H−1(T1)).
We are able to multiply the first line of the above equation by v, and obtain after integrating on
T1,

1

2

d

dt

∫
T1

|w|2 + V

∫
T1

|∂mw|2 = 0.

Next, integrating the above equation on time, one obtains :

‖w‖2
C ([0,T ],L2(T1)) + V

∫ T

0

∫
T1

|∂mw|2 = 0.

This achieves the proof.

Next we state an a priori estimates :

Lemma 3.1.1. Suppose that v0 ∈ H1(T1) and v ∈ C ([0, T ], H1(T1)) ∩ L2((0, T ), H2(T1)) and
∂tv ∈ L2((0, T ) × T1) satisfy (3.6). Then there exists a constant C = C(T, V ) > 0 such that v
satisfies the estimate (3.7).

Proof. Multiplying (3.6) by v, integrating over T1 with respect to m, one obtains

1

2

d

dt
‖v(t)‖2

L2((T1)) + V‖∂mv(t)‖2
L2((T1)) 6

1

2
‖F (t)‖2

L2((T1)) +
1

2
‖v(t)‖2

L2((T1)). (3.13)

Next, multiplying (3.6) by ∂mmv integrating over T1 with respect to m, one obtains after some
integration by part,

1

2

d

dt
‖∂mv‖2

L2(T1) +

∫
T1

V |∂mmv|2 =

∫
T1

F∂mmv −
∫
T1

∂mmv∂mv∂mV. (3.14)

By Holder inequality, one obtains :∣∣∣∣∫
T1

∂mmv∂mv∂mV

∣∣∣∣ 6 ‖∂mmv‖L2(T1)‖∂mv‖L∞(T1)‖∂mV ‖L2(T1)

and by Gagliardo-Niremberg inequality

‖∂mv‖2
L∞(T1) 6 2‖∂mmv‖L2(T1)‖∂mv‖L2(T1),

then ∣∣∣∣∫
T1

∂mmv∂mv∂mV

∣∣∣∣ 6 √2‖∂mmv‖3/2

L2(T1)‖∂mv‖
1/2

L2(T1)‖∂mV ‖L2(T1).

Using Young inequality for real numbers, for ε > 0, there is Cε > 0 such that∣∣∣∣∫
T1

∂mmv∂mv∂mV

∣∣∣∣ 6 ε‖∂mmv‖2
L2(T1) + Cε‖∂mV ‖4

L2(T1)‖∂mv‖2
L2(T1). (3.15)

As well, by Hölder inequality, one has :∣∣∣∣∫
T1

∂mmvF

∣∣∣∣ 6 ‖∂mmv‖L2(T1)‖F‖L2(T1) 6 ε‖∂mmv‖2
L2(T1) +

1

4ε
‖F‖2

L2(T1). (3.16)

13 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Gathering (3.14), (3.15) and (3.16), one has :

1

2

d

dt
‖∂mv‖2

L2(T1) + (V− 2ε)

∫
T1

|∂mmv|2 6
1

4ε
‖F‖2

L2(T1) + Cε‖∂mV ‖4
L2(T1)‖∂mv‖2

L2(T1). (3.17)

Next, summing (3.13) and (3.17), one obtains :

1

2

d

dt
‖v(t)‖2

H1(T1) + (V− 2ε)‖∂mv(t)‖2
H1(T1) 6

(
1

4ε
+

1

2

)
‖F (t)‖2

L2(T1)

+

(
Cε‖∂mV ‖4

L2(T1) +
1

2

)
‖v(t)‖2

H1(T1).

Then, choosing ε =
V
4
, there is a constant C1 depending only on V such that

d

dt
‖v(t)‖2

H1(T1) + V‖∂mv(t)‖2
H1(T1) 6 C1‖F (t)‖2

L2(T1) +
(
C1‖∂mV ‖4

L2(T1) + 1
)
‖v(t)‖2

H1(T1). (3.18)

Applying the Grönwall’s lemma to (3.18), one obtains :

‖v‖2
C ([0,T ],H1(T1)) + V‖∂mv‖2

L2((0,T ),H1(T1)) 6
(
C1‖F‖2

L2((0,T )×T1) + ‖v0‖2
H1(T1)

)
× exp

(
T + C1‖∂mV ‖4

L4((0,T ),L2(T1))

)
. (3.19)

It remains the estimation of ∂tv. Multiplying (3.6) by ∂tv and integrating in space, one obtains :∫
T1

|∂tv|2 +

∫
T1

∂tmvV ∂mv =

∫
T1

∂tvF =⇒ ‖∂tv‖2
L2(T1) +

1

2

d

dt

∫
T1

V |∂xv|2

=

∫
T1

∂tvF +
1

2

∫
T1

|∂xv|2∂tV

then

1

2
‖∂tv‖2

L2(T1) +
1

2

d

dt

∫
T1

V |∂mv|2 6
1

2
‖F‖2

L2(T1) +
1

2
‖∂mv‖2

L2(T1)‖∂tV ‖L∞(T1). (3.20)

Applying again Grönwall’s lemma to (3.20), one obtains :

‖∂tv‖2
L2((0,T )×(T1)) + V‖∂mv‖2

C ([0,T ],L2(T1) 6
(
‖F‖2

L2((0,T )×T1) + ‖V (0)‖L∞(T1)‖∂mv0‖2
L2(T1)

)
× exp

(
‖∂tV ‖L1((0,T ),L∞(T1))

)
. (3.21)

Finally, gathering (3.19) and (3.21), one has the result.

Remark 3.1.1. It is easy to prove that Πθ given by (3.10) is well defined, linear and continuous.
Let us prove that E defined in (3.11) satisfies E = [0, 1].

Lemma 3.1.2. E = [0, 1].
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Proof. Let us consider the linear non-homogeneous heat equation{
∂tv − V∂mmv = F,

v(0) = v0.
(3.22)

For F ∈ L2((0, T )× T1) and v0 ∈ H2(T1) there is an unique solution in X of (3.22) and the map
(F, v0) ∈ Y 7→ v ∈ X is continuous. Therefore E is not empty.

Suppose that θ0 ∈ E , and let us observe that for any θ ∈ [0, 1] :

Πθ = Πθ0 + (θ − θ0)(Π1 − Π0) = Πθ0

(
I + (θ − θ0)Π−1

θ0
(Π1 − Π0)

)
. (3.23)

Thus, for |θ − θ0| < ‖Π−1
θ0

(Π1 − Π0)‖L (X), one obtains θ ∈ E . Consequently, E is an open set of
[0, 1].

Let (θn)n be a sequence of E that converges to θ ∈ [0, 1]. As (3.23), one has :

Πθ = Πθn

[
I + (θ − θn)Π−1

θn
(Π1 − Π0)

]
. (3.24)

From the a priori estimates Lemma 3.1.1 and more precisely (3.8), one deduces that ‖Π−1
θn
‖L (Y,X)

depends only on ‖Vθn(0)‖L∞(T1), ‖∂tVθn‖L1(0,T ),L∞(T1)) and ‖∂mVθn‖L4((0,T ),L2(T1)) which are bounded
uniformly in n, thus

K := sup
n
‖Π−1

θn
‖L (Y,X) <∞.

Let us choose n0 such that
|θ − θn0|K‖Π0 − Π1‖L (Y,X) < 1,

and replace n by n0 in (3.24), one obtains that θ ∈ E , thus E is a closed set of [0, 1].
In short, E is, at the same time closed, open and non-empty set of [0, 1], so E = [0, 1].

Obviously, Theorem 3.1.4 is a consequence of the fact that 1 ∈ E .

Proof of Theorem 3.1.5. Assumptions on F and v0, ensure, thanks to Theorem 3.1.4, the existence
of a unique solution of (3.6) satisfying (3.7). By differentiating (3.6) with respect to m, we see
that ∂mv satisfies the following Cauchy problem{

∂t∂mv − ∂m(V ∂mmv) = ∂mF − ∂mmV ∂mv − ∂mV ∂mmv := F̃ ,

∂mv(0) = ∂mv0.
(3.25)

Assumptions on F and regularity on v given by Theorem 3.1.4, that is to say v ∈ C ([0, T ], H1(T1))∩
L2((0, T ), H2(T1)), ensure that F̃ ∈ L2((0, T )× T1). Applying again Theorem 3.1.4, we conclude,
by uniqueness Theorem 3.1.6, that ∂mv ∈ C ([0, T ], H1(T1)) ∩ L2((0, T ), H2(T1)) and satisfies

‖∂mv‖2
C ([0,T ],H1(T1)) + ‖∂t∂mv‖2

L2((0,T )×T1) + V‖∂mmv‖2
L2((0,T ),H1(T1))

6 C1

(
‖∂mv0‖2

H2(T1) + ‖F̃‖2
L2((0,T )×T1)

)
where C1 is given by (3.8). By Hölder inequality, one has :

‖F̃‖L2((0,T )×T1) 6 ‖∂mF‖L2((0,T )×T1) + ‖∂mmV ‖L∞((0,T ),L2(T1))‖∂mv‖L2((0,T ),L∞(T1))

+ ‖∂mV ‖L∞((0,T )×T1)‖∂mmv‖L2((0,T )×T1). (3.26)
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By Sobolev embedding H1(T1) ↪→ L∞(T1), there is a constant C > 0 such that :

‖∂mv‖L2((0,T ),L∞(T1)) 6 C‖∂mv‖L2((0,T ),H1(T1)).

Knowing that v satisfies (3.7), one obtains that the two last terms of the right hand side of(3.26)
is less than

C1V−1 max
(
‖∂mV ‖L∞((0,T )×T1); ‖∂mmV ‖L∞((0,T ),L2(T1))

) (
‖v0‖H2(T1) + ‖F‖L2((0,T )×T1)

)
.

This helps us to obtain the estimation (3.9), with a constant C depending on T and all condition
on V .

3.1.2 Setting tools for the fixed point theorem

In this section we set tools in order to use the fixed point theorem. The transport equation in
mass-Lagrangian coordinate, is easily solved by a simple time integration. Indeed function τ given
by

τ(t) = τ0 +

∫ t

0

∂mv(s)ds (3.27)

is the unique solution of the Cauchy problem{
∂tτ − ∂mv = 0,

τ(0) = τ0.
(3.28)

If v ∈ L1((0, T ), H3(T1)) and τ0 ∈ H2(T1) then τ ∈ C ([0, T ], H2(T1)).

Remark 3.1.2. From the expression of τ , one deduces easily the following bounds :

(ρmax − α0)−1 − ‖∂mv‖L1((0,T ),L∞(T1)) 6 τ(t,m) 6 α−1
0 + ‖∂mv‖L1((0,T ),L∞(T1)),

‖τ‖C ([0,T ],H2(T1)) 6 ‖τ0‖H2(T1) + ‖v‖L1((0,T ),H3(T1)).

Using the Theorem 3.1.5, one obtains the following :

Proposition 3.1.1. Assume that τ ∈ C ([0, T ], H2(T1)), ∂tτ ∈ C ([0, T ], H1(T1)), v0 ∈ H2(T1)
and that there exists a constant β > 0 such that

0 < (ρmax − β)−1 6 τ(t,m) 6 β−1. (3.29)

Then the linear non homogeneous problem{
∂tv − ∂m(µ̃(τ)∂mv) = −∂mP̃ (τ),

v(0) = v0

(3.30)

admits a unique solution v ∈ C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1)) which satisfies (3.7).
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The proof of this proposition boils down to proving that µ̃(τ) and ∂mP̃ (τ) satisfy hypothesis on
V and F respectively in the Theorem 3.1.5. We skip it for the sake of brevity.

Next we consider the vector space ET = C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1)) endowed with
the norm ‖·‖T defined by :

‖v‖2
T := ‖v‖2

C ([0,T ],H2(T1)) + ‖∂mv‖2
L2((0,T ),H2(T1)).

Obviously, (ET , ‖·‖T ) is a Banach space, and consequently, any closed ball of ET is complete. For
all R > 0 we denote by ET (R) the closed ball of radius R of ET . Given v ∈ ET (R), we consider
τv (3.27) the unique solution of (3.28). Bounding ‖∂mv‖L1((0,T ),L∞(T1)) in the first inequality of
Remark 3.1.2 with the Cauchy Schwartz inequality in time, one obtains that there exist T1 > 0
and a constant η = η(T1, R) > 0 such that, for all 0 6 t 6 T1,

0 < (ρmax − η)−1 6 τ(t,m) 6 η−1.

Then, adding Proposition 3.1.1 , one obtains that for any v ∈ ET1(R) there is a unique solution w
of the Cauchy problem (3.30), with τ given by (3.27). In the following Proposition, we show that
if T is small, then w ∈ ET (R).

Proposition 3.1.2. There are R∗ > 0 depending on the initial data and T2 6 T1 inversely pro-
portional to R∗ such that ‖w‖ET2

6 R∗.

Remark 3.1.3. Adding Proposition 3.1.2 to our previous analysis, one concludes the fact that the
map

ΦT2 : ET2(R
∗)→ ET2(R

∗)

v 7→ w

where w the unique solution of (3.30) with τ given by (3.27), is well defined.

It remains to show that ΦT is a contraction for some small enough T 6 T2. This result is stated
in the following.

Proposition 3.1.3. There exists T ∗ small and 0 < κ < 1 such that for any v, w ∈ ET ∗(R∗) we
have

‖ΦT ∗(v)− ΦT ∗(w)‖ET∗ 6 κ‖v − w‖ET∗ .

Using the fixed point theorem, we conclude that there exists a unique v∗ ∈ ET ∗(R) such that
ΦT ∗(v∗) = v∗. Such v∗ and τ∗ given by

τ∗(t) = τ0 +

∫ t

0

∂mv∗(s)ds,

satisfy the Navier Stokes system (3.3) in classical sense.

Proof of Proposition 3.1.2. Let us set V = µ̃(τ) and F = −∂mP̃ (τ) and rewrite the estimation for
w.

‖w‖2
C ([0,T ],H2(T1)) + ‖∂t‖2

L2((0,T ),H1(T1)) + V‖∂mw‖2
L2((0,T )×H2(T1))

6 C
(
‖v0‖2

H2(T1) + ‖F‖2
L2((0,T ),H1(T1))

)
: (3.31)
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with V depending on η. As shown before, the constant C is given by

C = C1

(
1 + V−1 max

(
‖∂mV ‖L∞((0,T )×(T1)); ‖∂mmV ‖L∞((0,T ),L2(T1))

))
(3.32)

where C1 is given by (3.8). Remembering that v ∈ ET (R), and assuming that T < T1 one has the
following estimates:

‖V (0)‖L∞(T1) = c1(α); ‖∂tV ‖L1((0,T ),L∞(T1)) 6 c2(η)RT ;

‖∂mV ‖L4((0,T ),L2(T1)) 6 c3(η)T 1/4
(
‖∂mτ0‖L2(T1) +RT

)
;

‖∂mV ‖L∞((0,T )×(T1)) 6 c4(η)
(
‖∂mτ0‖L2((T1)) +RT

)
;

‖∂mmV ‖L∞((0,T ),L2(T1)) 6 c5(η)
(
‖∂mmτ0‖L2(T1) +RT 1/2

)
;

‖F‖L2(0,T,H1(T1)) 6 c6(η)T
1
2 (‖τ0‖H2(T1) +R

√
T )(2 + ‖τ0‖H2(T1) +R

√
T ).

Let us remark that η is supposed to be fixed, thus constants ci do not depend on T neither R.
Thus, choosing a large R depending on norm of the initial data and a small T less than a constant
times the inverse of some power of R, one can make the right hand side of (3.31) less than R,
which completes the proof.

Proof of Proposition 3.1.3. Let v, w ∈ ET ∗(R∗), u = ΦT ∗(u), v = ΦT ∗(v) and

τu(t) = τ0 +

∫ t

0

∂mu(s)ds, τv(t) = τ0 +

∫ t

0

∂mv(s)ds.

As u, v satisfy (3.30) with τu and τv respectively, one has{
∂t (u− v)− ∂m (µ̃(τu)∂m (u− v)) = −F,
(u− v)(0) = 0

(3.33)

with F given by

F = P̃ ′(τu)∂mτu − P̃ ′(τv)∂mτv︸ ︷︷ ︸
F1

− ∂m {(µ̃(τu)− µ̃(τv)) ∂mv}︸ ︷︷ ︸
F2

.

Noting that F1 can be written in the form

F1 = P̃ ′(τu) (∂mτu − ∂mτv) +
(
P̃ ′(τu)− P̃ ′(τv)

)
∂mτv,

one easily obtains

‖F1‖L2((0,T )×T1) 6 c7(η)T 3/2
[
‖∂mm(u− v)‖C ([0,T ],L2(T1)) +

(
‖τ0 − τ‖H2(T1) +RT

)
‖∂m(u− v)‖C ([0,T ],L2(T1))

]
6 c7(η)T 3/2

(
1 + ‖τ0‖H2(T1) +RT

)
‖u− v‖ET∗ . (3.34)

Putting ∂mF1 in the form

∂mF1 = P̃ ′′(τu)(∂mτu + ∂mτv)(∂mτu − ∂mτv) +
(
P̃ ′′(τu)− P̃ ′′(τv)

)
+ P̃ ′(τu)∂mm (τu − τv) +

(
P̃ ′(τu)− P̃ ′(τv)

)
∂mmτv,
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one shows that

‖∂mF1‖L2((0,T )×T1) 6 c8(η)T 3/2
[
1 + ‖τ0‖H2(T1) +R

√
T
]
‖u− v‖ET∗ . (3.35)

We turn now to the estimation of F2. We rewrite F2 on the form

F2 = [µ̃′(τu) (∂m(τu − τv)) + (µ̃′(τu)− µ̃′(τv)) ∂mτv] ∂mv + (µ̃(τu)− µ̃(τv)) ∂mmv.

And one finds easily

‖F2‖L2((0,T )×T1) 6 c9(η)RT 3/2
(
1 + ‖τ0‖H2(T1) + TR

)
‖u− v‖ET∗ . (3.36)

Despite the fact that ∂mF2 seems a little bit difficult to estimate, as before, we put it on the form

∂mF2 =
[
µ̃′′(τu) (∂mτu + ∂mτv) (∂mτu − ∂mτv) + (µ̃′′(τu)− µ̃′′(τv)) |∂mτv|2

+µ̃′(τu) (∂mmτu − ∂mmτv) + (µ̃′(τu)− µ̃′(τv)) ∂mmτv] ∂mv
+ [µ̃′(τu) (∂mτu − ∂mτv) + (µ̃′(τu)− µ̃′(τv)) ∂mτv] ∂mmv + ∂mmmv (µ̃(τu)− µ̃(τv)) .

And one obtains,

‖∂mF2‖L2((0,T )×T1) 6 c10(η)TR
[
1 +R +

√
T
(
‖τ0‖H2(T1) +R

√
T
)

(
1 +R + ‖τ0‖H2(T1) +R

√
T
)]
‖u− v‖ET∗ . (3.37)

As u − v is solution of (3.33), then thanks to Theorem 3.1.5, it satisfies (3.9), with v0 = 0, a
constant C given by (3.32). Adding estimations (3.34), (3.35), (3.36) and (3.37) and choosing a
small T ∗ inversely proportional to a power of R, one obtains that ΦT ∗ is a contracting map. This
ends the proof.

3.1.3 Back to Eulerian coordinate

Above, we proved that given (ρ0, u0) ∈ H2(T1) ×H2(T1), there exists a classical solution (τ∗, v∗)
of the Cauchy problem associated to (3.3) with initial data (τ0, v0) defined by :

τ0(m) = 1/ρ0(Y (m)) and v0 = u0(Y (m)).

As we showed in section 2.2, it is obvious that (ρ∗, u∗) defined by :

u∗(t, x) = v∗(t,m(t, x)) and ρ∗(t, x) =
1

τ∗(t,m(t, x))

is solution of the Navier Stokes system (3.1)in Eulerian coordinate. In the following we prove that
(ρ∗, u∗) is as regular as (τ∗, v∗).

Let us note that the jacobian of the change of variable J : (t, x) 7→ (t,m(t, x)) is 1/τ∗. Then,
as τ∗ is far from zero, J ∈ C ([0, T ], H2(T1)) and consequently (ρ∗, v∗) ∈ (C ([0, T ], H2(T1)))

2. It

remains to prove that ∂xxxu∗ ∈ L2((0, T )× T1). First, one uses the fact that
∂x

∂m
= τ∗ to obtain

∂xxxu∗ = τ∗|∂mτ∗|2∂mv∗ + τ 2
∗∂mmτ∗∂mv∗ + 3τ 2

∗∂mτ∗∂mmv∗ + τ 3
∗∂mmmv∗.

Then using the regularity on τ∗, v∗ and the fact that τ is far from zero, one proves that ∂xxxu∗ ∈
L2((0, T )× T1). And the result follows.
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3.2 Uniqueness of the local solution
In this section we prove that the solution that we constructed with a fixed point theorem is unique.
The statement is the following.

Theorem 3.2.1. Given (ρ0, u0) ∈ H2(T1) × H2(T1). Then for any T > 0 there is at most one
solution (ρ, u) ∈ C ([0, T ], H2(T1))×(C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1))) of the Cauchy problem

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + P (ρ)− µ(ρ)∂xu) = 0,

(ρ(0), u(0)) = (ρ0, u0)

(3.38)

such that there exists c = c(T ) > 0 : c 6 ρ(t, x) 6 ρmax − c.

Remark 3.2.1. Let (ρ, u) and (ρ′, u′) be two solutions of the Navier Stokes system (3.1), and
let us define δρ = ρ − ρ′ and δu = u − u′. We can easily convince ourselves that the proof of
Theorem 3.2.1 comes from the following theorem :

Theorem 3.2.2. There exist two positives constants C = C(T, ρ, ρ′, u, u′, ρ̄) and ν = ν(c) such
that

sup
06t6T

∫
T1

[
ρ(t, x)|δu(t, x)|2 + |δρ(t, x)|2

]
dx+ ν

∫ T

0

∫
T1

|∂xδu(t, x)|2dtdx

6 C

∫
T1

[
ρ(t, x)|δu(0, x)|2 + |δρ(0, x)|2

]
dx. (3.39)

Proof of Theorem 3.2.2. Let us note that δρ and δu satisfy :
∂tδρ+ ∂x (uδρ) + ∂x (ρ′δu) = 0,

ρ∂tδu+ δρ∂tu
′ + ρ∂x

(
δu
u+ u′

2

)
+ δρ∂x

|u′|2

2
+ P ′(ρ)∂xδρ

+ (P ′(ρ)− P ′(ρ′)) ∂xρ′ − ∂x (µ(ρ)∂xδu)− ∂x ((µ(ρ)− µ(ρ′))∂xu
′) = 0.

(3.40)

Now, multiply the first equation of (3.40) by δρ, one obtains, for ε > 0,

1

2

d

dt
‖δρ(t)‖2

L2(T1) 6
1

2
‖δρ(t)‖2

L2(T1)‖∂xu(t)‖L∞(T1) + 2ε‖∂xδu(t)‖2
L2(T1)

+ cε

[
‖δu(t)‖2

L2(T1)‖∂xρ′‖2
L2(T1) + ‖δρ‖2

L2(T1)‖∂xρ′‖L2(T1)

]
+

1

4ε
‖δρ(t)‖2

L2(T1)‖ρ′‖2
L∞(T1). (3.41)

Next multiply the second equation of (3.40) by δu, one obtains that there exists a constant C1

depending only on c and ε such that

1

2

d

dt

∫
T1

ρ|δu(t)|2 +

∫
T1

(µ (ρ)− 2ε) ‖∂xδu(t)‖2 6 C1

(
‖δu‖2

L2(T1) + ‖δρ‖2
L2(T1)

)
(
1 + ‖∂tρ‖L∞(T1) + ‖∂tu′‖L∞(T1) + ‖ρ∂x(u+ u′)− (u+ u′)∂xρ‖L∞(T1) + ‖∂xu′2‖L∞(T1)

+‖∂xρ‖L∞(T1) + ‖∂xρ′‖L∞(T1) + ‖∂xu′‖L∞(T1)

)
. (3.42)

Summing (3.41) and (3.42), one easily apply Grönwall lemma and obtains (3.39). Terms in the
obtained inequality after applying Grönwall inequality coming from blue terms in (3.41) and
(3.42) are easily bounded by a constant depending on norms of T , ρ, ρ′, u and u′ maybe ex-
cept ‖∂tρ‖L1((0,T ),L∞(T1)) and ‖∂tu′‖L1((0,T ),L∞(T1)). But by (3.38), one has ∂tρ ∈ C ([0, T ], H1(T1))
and because ρ′ is far from vacuum, ∂tu′ ∈ L2((0, T ), H1(T1)). This ends the proof.
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3.3 Blow up criterion
In this section, we want to find a criterion for which the solution of the Cauchy problem associated
to the Navier Stokes system with initial data (ρ0, u0) ∈ H2(T1)×H2(T1) is globally defined. Let
us note that the time of existence of the local solution is proportional to the inverse of a power of
the norm of initial data, which explains the fact that the smaller the initial data, the greater the
time of existence. Throughout this section the viscosity take the form µ(ρ) = ρθ with θ > 0 and
the pressure P satisfies (3.2). In the following lines, we state an extension theorem for our system
which is similar to the classical one for ODEs.

Theorem 3.3.1. Let (τ, v) ∈ C ([0, T ], H2(T1)) × (C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1))) be the
local solution of (3.3) with initial data (τ0, v0) ∈ H2(T1) × H2(T1). Assume that there are two
positives constants C(T ) and c(T ) such that

∀ 0 6 t < T ‖τ(t)‖H2(T1), ‖u(t)‖H2(T1) 6 C and (ρmax − c)−1 6 τ(t) 6 c−1.

Then the solution can be extended beyond T .

The proof of this theorem is based on the fact that one can construct one solution of the same
system starting very closely to T .

From this theorem, one has the following blow-up criterion :

Remark 3.3.1. Let T ∗ be the maximal existence time of the local solution (τ, v) of the Navier
Stokes system (3.3) with initial data (τ0, v0) ∈ H2(T1) × H2(T1). Assume that there are two
non-negative constants C > 0, c > 0 such that

∀ 0 6 t < T ∗, ‖τ(t)‖H2(T1), ‖u(t)‖H2(T1) 6 C and (ρmax − c)−1 6 τ(t) 6 c−1. (3.43)

Then T ∗ = +∞.

The new challenge is to show that the bound on the density controls the higher Sobolev norms
of the solution. Consequently, the previous explosion criterion could be simplified by taking into
account only the fact that the density is away from zero and ρmax. The result is stated in the
following theorem :

Theorem 3.3.2. Let T ∗ be the maximal existence time of the local solution (τ, v) of the Navier
Stokes system (3.3) with initial data (τ0, v0) ∈ H2(T1)×H2(T1). Assume that

0 < inf
[0,T ∗)×T1

τ 6 sup
[0,T ∗)×T1

τ < ρmax. (3.44)

Then T ∗ = +∞.

To obtain the above theorem we will prove Remark 3.3.1 : we only need to estimate the higher
Sobolev norms of τ and v. We first obtain ∂mv ∈ L2((0, T ), L∞(T1)), which allows us to close
estimates for τ and v. The proof of the blow-up criterion in Eulerian coordinate Theorem 3.1.3
follows. Indeed, ρ bounded in Eulerian coordinate is equivalent to ρ bounded in mass-Lagrangian
coordinate with the same bounds.

21 Singular pressures in the mechanics of compressible fluids



3.3. Blow up criterion Chapter 3. Local theory for regular initial data

Proof of Theorem 3.3.1. Let be t0 = T − εC−1 > 0 with ε small and consider the Cauchy problem
associated to (3.3) with initial data (τ(t0), v(t0)). Then, according to the previous section, there
exists a unique solution valid on (t0, T

∗) with T ∗ − t0 greater than a constant times C−1. Then
the smallness of ε allows T ∗ − T to be non negative otherwise like a constant times C−1. By
uniqueness, on [t0, T ] the new solution equals the first one. And by juxtaposing the two solutions,
one obtains a new one on [0, T ∗].

Proof of Theorem 3.3.2. Multiplying the first equation of (3.3) by τ the second one by v, summing
and integrating on T1 and using a Grönwall lemma one has the following estimates :

Lemma 3.3.1. There exists C1 = C1(T, c, ‖τ0‖L2(T1), ‖v0‖L2(T1)) such that

sup
06t6T

{‖τ(t)‖2
L2(T1) + ‖v(t)‖2

L2(T1)}+

∫ T

0

∫
T1

|∂mv(t,m)|2dtdm 6 C1. (3.45)

In the following, we obtain ∂mv ∈ L2((0, T ), L∞(T1)).

Lemma 3.3.2. There exists C2 = C2(T, c, ‖ρ̃0‖L2(T1), ‖v0‖H1(T1)) such that∫ T

0

∫
T1

|v(t,m)|2dtdm+ sup
06t6T

∫
T1

|∂mv(t,m)|2dm 6 C2. (3.46)

Moreover, there exists C3 = C3(T, c, ‖ρ̃0‖L2(T1), ‖v0‖H1(T1)) such that∫ T

0

‖∂mv(t)‖2
L∞(T1)dt 6 C3.

Proof. Let us multiply the momentum equation by ∂tv and integrate on T1. One obtains :∫
T1

|∂tv|2 +
1

2

∫
T1

ρ̃1+θ∂t|∂mv|2 =

∫
T1

∂tmvP (ρ̃).

First, ∫
T1

ρ̃1+θ∂t|∂mv|2 =
d

dt

∫
T1

ρ̃1+θ|∂mv|2 + (1 + θ)

∫
T1

ρ̃2+θ(∂mv)3

and ∫
T1

∂tmvP (ρ̃) =
d

dt

∫
T1

∂mvP (ρ̃) +

∫
T1

P ′(ρ̃)ρ̃2|∂mv|2.

Then gathering the three above equations, one has :∫
T1

|∂tv|2 +
1

2

d

dt

∫
T1

ρ̃1+θ|∂mv|2 =
d

dt

∫
T1

∂mvP (ρ̃) +

∫
T1

P ′(ρ̃)ρ̃2|∂mv|2 −
1 + θ

2

∫
T1

ρ̃2+θ(∂mv)3.

Integrating the above equation on (0, t) with respect to time, one has :∫ t

0

∫
T1

|∂tv|2 +
1

2

∫
T1

ρ̃1+θ|∂mv(t)|2 =
1

2

∫
T1

ρ̃1+θ
0 |∂mv0|2 +

∫
T1

∂mv(t)P (ρ̃(t))−
∫
T1

∂mv0P (ρ̃0)

+

∫ t

0

∫
T1

ρ̃2|∂mv|2P ′(ρ̃)− 1 + θ

2

∫ t

0

∫
T1

ρ̃2+θ(∂mv)3. (3.47)
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In order to apply Grönwall lemma one has to estimate precisely each term appearing in the
right hand side of the above equation. Note that the singularity of the pressure makes the task
complicated, especially in terms showing P (ρ̃) or P ′(ρ̃), for instance when ρ becomes closer and
closer to ρmax. This justifies the fact that the assumption of uniform bounds on the density (3.44)
is of paramount importance. It implies in particular that P (ρ̃) and P ′(ρ̃) are L∞((0, T )×T1) and
by Hölder inequality and Lemma 3.3.1, one has, for some ε > 0 :∣∣∣∣∫

T1

∂mv(t)P (ρ̃(t))

∣∣∣∣ 6 ε

∫
T1

ρ̃1+θ(t)|∂mv(t)|2 +
1

4ε

∫
T1

ρ̃(t)−(1+θ)P (ρ̃(t)); (3.48)

∣∣∣∣∫ t

0

∫
T1

ρ̃2|∂mv|2P ′(ρ̃)

∣∣∣∣ 6 ∫ t

0

‖P ′(ρ̃)ρ̃1−θ‖L∞(T1)

∫
T1

ρ̃1+θ|∂mv(t)|2. (3.49)

The term
∫ T

0

∫
T1

ρ̃2+θ(∂mv)3 forces a L2((0, T ), L∞(T1)) bound on ∂mv. To prove this under the

assumption (3.44), we will use the bound on ρ̃1+θ∂mv − P (ρ̃) which is nothing other than the
effective flux in mass Lagrangian coordinates.∣∣∣∣∫ t

0

∫
T1

ρ̃2+θ(∂mv)3

∣∣∣∣ 6 ∣∣∣∣∫ t

0

∫
T1

ρ̃|∂mv|2
(
ρ̃1+θ∂mv − P (ρ̃)

)∣∣∣∣+

∣∣∣∣∫ t

0

∫
T1

ρ̃|∂mv|2P (ρ̃)

∣∣∣∣
6
∫ t

0

‖ρ̃1+θ∂mv − P (ρ̃)‖L∞(T1)

∫
T1

ρ̃|∂mv|2 +

∫ t

0

‖ρ̃−θP (ρ̃)‖L∞(T1)

∫
T1

ρ̃1+θ|∂mv|2

6
1

2

∫ t

0

‖ρ̃1+θ∂mv − P (ρ̃)‖2
L∞(T1) +

1

2

∫ t

0

[∫
T1

ρ̃|∂mv|2
]2

+

∫ t

0

‖ρ̃−θP (ρ̃)‖L∞(T1)

∫
T1

ρ̃1+θ|∂mv|2.

By Gagliardo-Niremberg inequality, one has :

‖ρ̃1+θ∂mv−P (ρ̃)‖2
L∞ 6 2‖∂tv‖L2(T1)‖ρ̃1+θ∂mv−P (ρ̃)‖L2(T1) 6 ‖∂tv‖2

L2(T1) +‖ρ̃1+θ∂mv−P (ρ̃)‖2
L2(T1)

then∣∣∣∣∫ t

0

∫
T1

ρ̃2+θ(∂mv)3

∣∣∣∣ 6 1

2

∫ t

0

∫
T1

|∂tv|2 +

∫ t

0

‖P (ρ̃)‖2
L2(T1) +

∫ t

0

[
‖ρ̃1+θ‖L∞(T1) + ‖ρ̃−θP (ρ̃)‖L∞(T1)

+‖ρ̃1−θ‖L∞(T1)

[∫
T1

|∂mv|2
]] ∫

T1

ρ̃1+θ|∂mv|2. (3.50)

Gathering (3.47), (3.48), (3.49) and (3.50), one obtains :∫ t

0

∫
T1

|∂tv|2 +
1

2

∫
T1

ρ̃1+θ|∂mv(t)|2 6 1

2

∫
T1

ρ̃(t)−(1+θ)P (ρ̃(t)) +

∫ t

0

‖P (ρ̃)‖2
L2(T1)

+ (1 + θ)

∫ t

0

[
‖ρ̃1+θ‖L∞(T1) + ‖ρ̃−θP (ρ̃)‖L∞(T1) + ‖P ′(ρ̃)ρ̃1−θ‖L∞(T1)

+‖ρ̃1−θ‖L∞(T1)

[∫
T1

|∂mv|2
]] ∫

T1

ρ̃1+θ|∂mv|2

+

∣∣∣∣12
∫
T1

ρ̃1+θ
0 |∂mv0|2 −

∫
T1

∂mv0P (ρ̃0)

∣∣∣∣ .
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Then, applying the Grönwall lemma, the boundedness of the density and the estimates Lemma 3.3.1,
one has the following bound with a constant C = C(c, T, E0, ‖∂mv0‖L2(T1)),∫ T

0

∫
T1

|∂tv|2 + sup
06t6T

∫
T1

ρ̃1+θ|∂mv(t)|2 6 C.

This completes the first part of the lemma. The second one comes from the following :∫ T

0

‖∂mv(t)‖2
L∞(T1) 6 2

∫ T

0

‖∂mv − P (ρ)‖2
L∞(T1) +

∫ T

0

‖P (ρ)‖2
L∞(T1)

6 4

∫ T

0

‖∂mv − P (ρ)‖L2(T1)‖∂tv‖L2(T1) +

∫ T

0

‖P (ρ)‖2
L∞(T1)

6 2

∫ T

0

‖∂tv‖2
L2(T1) + 4

(∫ T

0

‖∂mv‖2
L2(T1) + ‖P (ρ)‖2

L2(T1)

)
+

∫ T

0

‖P (ρ)‖2
L∞(T1).

Using Remark 3.3.1, one notes that the proof of Theorem 3.3.2 is achieved after proving the
following :

Lemma 3.3.3. Given (τ, v) ∈ C ([0, T ], H2(T1)) × (C ([0, T ], H2(T1)) ∩ L2((0, T ), H3(T1))) solu-
tion of the Cauchy problem associated to the Navier Stokes system (3.3) with initial data (τ0, v0) ∈
H2(T1)×H2(T1). Then there exist constant C = C(T, c, ‖τ0‖H2(T1), ‖v0‖H2(T1)) and ν = ν(c) such
that

sup
06t6T

{‖τ(t)‖2
H2(T1) + ‖v(t)‖2

H2(T1)}+ ν

∫ T

0

‖∂mv(t)‖2
H2(T1)dt 6 C. (3.51)

Proof. We know that in mass-Lagrangian coordinate, the Navier Stokes equation is written{
∂tτ − ∂mv = 0,

∂tv + ∂m

(
P̃ (τ)− µ̃(τ)∂mv

)
= 0.

(3.52)

Multiply (3.52)1 by τ , (3.52)2 by v, summing and integrating on the T1, for ε > 0, one has :

d

dt
{‖τ(t)‖2

L2(T1) + ‖v(t)‖2
L2(T1)}+

∫
T1

(µ̃(τ)− ε)|∂mv|2 6 C(ε, c)‖τ(t)‖2
L2(T1). (3.53)

Next, multiply (3.52)1 by ∂mmτ , (3.52)2 by ∂mmv, summing and integrating on the T1, one has :

d

dt
{‖∂mτ(t)‖2

L2(T1) + ‖∂mv(t)‖2
L2(T1)}+

∫
T1

(µ̃(τ)− ε)|∂mmv|2 6 C(ε, c)‖∂mτ(t)‖2
L2(T1). (3.54)

Taking two derivatives of (3.52)1 with respect to m and multiplying by ∂mmτ and integrating on
the torus, one obtains :

1

2

d

dt
‖∂mmτ(t)‖2

L2(T1) 6 ε‖∂mmmv(t)‖2
L2(T1) +

1

4ε
‖∂mmτ(t)‖2

L2(T1). (3.55)

Taking two derivatives of (3.52)2 with respect to m, next multiplying by ∂mmv and integrating
on the torus, one obtains :

1

2

d

dt
‖∂mmv(t)‖2

L2(T1) +

∫
T1

µ̃(τ)|∂mmmv|2 =

∫
T1

∂mmmv
[
P̃ ′′(τ)|∂mτ |2 + P̃ ′(τ)∂mmτ

−µ̃′′(τ)|∂mτ |2∂mv − µ̃′(τ)∂mmτ∂mv − 2µ̃′(τ)∂mτ∂mmv
]
. (3.56)
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Now we have to estimate each terms appearing in the right hand side of (3.56). By Hölder
inequality and Gagliardo-Niremberg one has successively,∣∣∣∣∫

T1

P̃ ′′(τ)∂mmmv|∂mτ |2
∣∣∣∣ 6 ε‖∂mmmv‖2

L2(T1) + C1(ε, c)‖∂mτ‖4
L4(T1)

6 ε‖∂mmmv‖2
L2(T1) + C1(ε, c)‖∂mmτ‖L2(T1)‖∂mτ‖3

L2(T1)

6 ε‖∂mmmv‖2
L2(T1) + C1(ε, c)

(
‖∂mmτ‖2

L2(T1) + ‖∂mτ‖6
L2(T1)

)
; (3.57)

∣∣∣∣∫
T1

P̃ ′(τ)∂mmmv∂mmτ

∣∣∣∣ 6 ε‖∂mmmv‖2
L2(T1) + C3(ε, c)‖∂mmτ‖2

L2(T1); (3.58)

∣∣∣∣∫
T1

µ̃′′(τ)∂mmmv|∂mτ |2∂mv
∣∣∣∣ 6 C4(c)‖∂mmmv‖L2(T1)‖∂mv‖L2(T1)‖∂mτ‖2

L∞(T1)

6 2C4(c)‖∂mmmv‖L2(T1)‖∂mv‖L2(T1)‖∂mmτ‖L2(T1)‖∂mτ‖L2(T1)

6 ε‖∂mmmv‖2
L2(T1) +

C4(c)

2ε
‖∂mmτ‖2

L2(T1)‖∂mτ‖2
L2(T1)‖∂mv‖2

L2(T1); (3.59)

∣∣∣∣∫
T1

µ̃′(τ)∂mmmv∂mmτ∂mv

∣∣∣∣ 6 ε‖∂mmmv‖2
L2(T1) + C5(ε, c)‖∂mmτ‖2

L2(T1)‖∂mv‖2
L∞(T1); (3.60)

∣∣∣∣∫
T1

µ̃′(τ)∂mmmv∂mτ∂mmv

∣∣∣∣ 6 C6(c)‖∂mmmv‖L2(T1)‖∂mmv‖L∞(T1)‖∂mτ‖L2(T1)

6
√

2C6(c)‖∂mmmv‖3/2

L2(T1)‖∂mmv‖
1/2

L2(T1)‖∂mτ‖L2(T1)

6 ε‖∂mmmv‖2
L2(T1) +

√
2C6(c)

4ε
‖∂mmv‖2

L2(T1)‖∂mτ‖4
L2(T1). (3.61)

First combining (3.53) and (3.54), and applying Grönwall lemma, one has :

sup
06t6T

{‖τ(t)‖2
H1(T1) + ‖v(t)‖2

H1(T1)}+ ν

∫ T

0

‖∂mv(t)‖2
H1(T1)dt 6 C7. (3.62)

Next, combining (3.55), (3.56), (3.57), (3.58), (3.59), (3.60) and (3.61), one finds a constant C8(ε, c)
such that

1

2

d

dt

[
‖∂mmτ(t)‖2

L2(T1) + ‖∂mmv(t)‖2
L2(T1)

]
+

∫
T1

(µ̃(τ)− 6ε)|∂mmmv|2 6 C8(ε, c)
[
‖∂mτ‖6

L2(T1)+(
‖∂mmτ‖2

L2(T1) + ‖∂mmv‖2
L2(T1)

)(
1 + ‖∂mτ‖2

L2(T1)‖∂mv‖2
L2(T1) + ‖∂mv‖2

L∞(T1) + ‖∂mτ‖4
L2(T1)

)]
.

(3.63)

To apply the Grönwall to the above equality, we need ∂mτ ∈ L6((0, T ), L2(T1)), ∂mv ∈ L4((0, T ), L2(T1))
and ∂mv ∈ L2((0, T ), L∞(T1)). The two first part of these assumptions are ensured by (3.62). The
last one is the motivation of Lemma 3.3.2. In consequence, thanks to Lemma 3.3.2 and (3.62), one
easily applies the Grönwall lemma and obtains the lemma.

And the Theorem 3.3.2 follows.
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CHAPTER 4

EXISTENCE OF CLASSICAL AND GLOBAL SOLUTION

4.1 Main results
In the previous chapter, we showed that if the density satisfies (3.44), the solution that we built,
is globally defined in time. It is natural to want to know under what condition on the initial data,
(3.44) is satisfied. In [2], Bresch, Perrin and Zatorska address this problem by using the so-called
Bresch-Desjardins entropy with singular pressure on the form :

P (ρ) =
ργ

(1− ρ)β
, β, γ > 1.

One observes that the Navier Stokes system can be written as follows :{
∂tρ̃+ ρ̃2∂mv = 0,

∂tv + ∂m(P (ρ̃)− µ(ρ̃)ρ̃∂mv) = 0.
(4.1)

Then multiply the second equation of the above system by the so-called effective velocity

v +
µ(ρ̃)

ρ̃
∂mρ̃

and integrate on T1, one has :

d

dt

∫
T1

(
1

2

∣∣∣∣v +
µ(ρ̃)

ρ̃
∂mρ̃

∣∣∣∣2 + e(ρ)

)
+

∫
T1

P ′(ρ)ρ−1|∂mρ|2 = 0.

If we assume that the viscosity equals 1, one has a L∞loc(R+, L2(T1)) bound on the effective velocity
provided that v0 + ∂m ln(ρ̃0) belongs to L2(T1) and therefore ∂m ln(ρ̃0) = ρ̃∂x ln(ρ0) ∈ L2(T1) and
consequently ∂xρ0 ∈ L2(T1), because, it is natural to assume that the initial velocity belongs to
L2(T1) when working with the Navier Stokes system with finite energy. This shows that they use
the H1 assumption on the initial density in their computations.

In the following, we obtain the same result only assuming finite (small) initial energy and as
a consequence, one obtains the existence of global classical solution of the Navier Stokes system.
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The proof is inspired by the Lemma 1.3 of [25]. Throughout this section, the singular pressure
take the form

P (ρ) =
ργ

(1− ρ)β
, β, γ > 1. (4.2)

The main result of this chapter is the following :

Theorem 4.1.1. Assume that there exists α0 > 0 such that

0 < α0 6 ρ0 6 1− α0.

Then there exist 0 < α < α0 independent of E0, a non negative constant C = C(E0) such that for
all T > 0, there exists c = c(T,E0) > 0 such that

∀ 0 6 t 6 T, 0 < c 6 ρ̃(t) 6 (1− α) expC.

In particular, if E0 << 1, then there exists 0 < c̃ = c̃(E0) < 1 such that :

∀ 0 6 t 6 T, 0 < c 6 ρ̃(t,m) 6 c̃.

Gathering the above theorem, the existence theorem Theorem 3.1.1, the uniqueness theorem Theo-
rem 3.2.1 and the blow-up criterion Theorem 3.3.2, one has the following existence and uniqueness
of classical and global solution of the Cauchy problem associated to the Navier Stokes system.

Theorem 4.1.2. Assume that (ρ0, u0) ∈ H2(T1) ×H2(T1), the pressure P is like (4.2) and that
there exists α0 > 0 such that

α0 6 ρ0 6 ρmax − α0

and the initial energy E0 << 1. Then, there exists a unique classical solution

(ρ, u) ∈ C (R+, H2(T1))×
(
C (R+, H2(T1)) ∩ L2

loc(R+, H3(T1))
)

of the Cauchy problem 
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xP (ρ) = ∂xxu,

ρ(0) = ρ0, u(0) = u0.

Moreover, there exists c̃ = c̃(E0) < 1 such that for all T > 0, there exists 0 < c = c(T,E0) such

0 < c 6 ρ 6 c̃ < 1,

and for any T > 0, there exists C = C(T, α0, ‖ρ0‖H2(T1), ‖u0‖H2(T1)) > 0 such that :

sup
06t6T

{‖ρ(t)‖2
H2(T1) + ‖u(t)‖2

H2(T1)}+

∫ T

0

|∂xu|2H2(T1)} 6 C.

The proof of Theorem 4.1.1 follows after the following results.
Let us define e and the energy E respectively by :

e(ρ) =

∫ ρ

ρ

s−2 [P (s)− P (ρ)] ds and E(t) =

∫
T1

[
|v(t,m)|2 + e(ρ̃(t,m))

]
dm

where ρ =
1

|T1|

∫
T1

ρ0(x)dx. The classical energy estimate of the Navier Stokes system leads to :
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Proposition 4.1.1. Assume that (ρ0, u0) ∈ (H2(T1))
2. Then,

sup
06t6T

E(t) +

∫ T

0

∫
T1

ρ̃|∂mv|2(t,m)dtdm 6 E0

with
E0 =

∫
T1

[
|v0(m)|2 + e(ρ̃0(m))

]
dm <∞.

Let us define ϕ by

ϕ(t,m) =
1

|T1|

∫
T1

∫ m

q

[
1

ρ̃(t, q′)
− 1

|T1|

∫
T1

dz

ρ̃(t, z)

]
dq′dq. (4.3)

The function ϕ is a periodic function differential so that we can use it as test function in the
momentum equation. The exceptional feature of ϕ is that its space derivative can be bound by
below when the density is closer to 1.

By testing ϕ with the momentum equation, one has the following :

Lemma 4.1.1.∣∣∣∣∫ T

0

∫
T1

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
(t,m)dtdm

∣∣∣∣
6 2E

1/2
0 M

1/2
0 +

√
TE

1/2
0

[
|T1|1/2E1/2

0 +M
1/2
0

[
1 + |T1|−1/2M

1/2
0

]]
(4.4)

with
M0 =

∫
T1

dm

ρ̃0(m)
.

Because of the singularity of the pressure it is not sure that P (ρ̃) is integrable. But, the above
lemma leads to the following :

Lemma 4.1.2. One has P (ρ̃) and ρ̃−1P (ρ̃) are L1((0, T )× T1).

From this lemma, one deduces a lower and up bound for the density when the initial energy is
small. The result is stated in the following :

Lemma 4.1.3. There exist 0 < α < α0 independent of E0 and a constant C = C(E0) going to
zero when E0 tends to zero, such that

ρ̃ 6 (1− α) expC.

In particular, for small E0, one can bound the density far from the singularity of the pressure.

Lemma 4.1.4. There exists a constant C = C(T,E0) such that

∀ 0 6 t 6 T, ρ̃(t)) > C.
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4.2 Proofs
Proof of Lemma 4.1.1. Testing ϕ defined in (4.3) with the momentum equation, one obtains∫

(T1)

v(T,m)ϕ(T,m)−
∫
T1

v(0,m)ϕ(0,m) =

∫ T

0

∫
T1

v(t,m)∂tϕ(t,m)dtdm

+

∫ T

0

∫
T1

(P (ρ̃)− ρ̃∂mv(t,m)) ∂mϕ(t,m)dtdm. (4.5)

Noting that

∂tϕ(t,m) = v(t,m)− 1

|T1|

∫
T1

v(t, q)dq =
1

|T1|

∫
T1

∫ m

q

∂q′v(t, q′)dq′dq

and
∂mϕ(t,m) =

1

ρ̃(t,m)
− 1

|T1|

∫
T1

dq

ρ̃(t, q)
,

then (4.5) implies∫ T

0

∫
T1

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
(t,m)dtdm =

∫
T1

v(0,m)ϕ(0,m)−
∫
T1

v(T,m)ϕ(T,m)

+
1

|T1|

∫ T

0

∫
T1

v(t,m)

∫
T1

∫ m

q

∂q′v(t, q′)dq′dqdtdm

−
∫ T

0

∫
T1

ρ̃∂mv(t,m)

[
1

ρ̃(t,m)
− 1

|T1|

∫
T1

dq

ρ̃(t, q)

]
. (4.6)

In the following we estimate terms appearing in the right hand side of the above equality. We
begin by the third term.∫ T

0

∫
T1

v(t,m)

∫
T1

∫ m

q

∂q′v(t, q′)dq′dqdmdt 6
∫ T

0

[∫
T1

|v(t,m)|dm
] [∫

T1

|∂qv(t, q)|dq
]
dt

6

[∫ T

0

[∫
T1

|v(t,m)|dm
]2
]1/2 [∫ T

0

[∫
T1

|∂qv(t, q)|dq
]2
]1/2

6 |T1|
[∫ T

0

∫
T1

|v(t,m)|2dm
]1/2 [∫ T

0

∫
T1

|∂qv(t, q)|2dq
]1/2

6 |T1|
√
T

[
sup

06t6T

∫
T1

|v(t,m)|2dm
]1/2 [∫ T

0

∫
T1

|∂qv(t, q)|2dq
]1/2

.

Then, using estimation in Proposition 4.1.1, one obtains :∣∣∣∣∫ T

0

∫
T1

v(t,m)

∫
T1

∫ m

q

∂q′v(t, q′)

∣∣∣∣ 6 |T1|
√
TE0. (4.7)

The last terms∣∣∣∣∫ T

0

∫
T1

ρ̃∂mv

[
1

ρ̃
− 1

|T1|

∫
T1

dq

ρ̃(t, q)

]∣∣∣∣ 6 √TE1/2
0

[∫
T1

dm

ρ̃0(m)

]1/2
[

1 + |T1|−1/2

[∫
T1

dm

ρ̃0(m)

]1/2
]
.

(4.8)
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As well ∣∣∣∣∫
T1

v(0,m)ϕ(0,m)−
∫

(T1)

v(T,m)ϕ(T,m)

∣∣∣∣ 6 2E
1/2
0

[∫
T1

dm

ρ̃0(m)

]1/2

. (4.9)

Then, combining (4.6), (4.7), (4.8) and (4.9) one obtains (4.4).

Proof of Lemma 4.1.2. The proof consists in separating the integral of (4.4) into two parts : where
the density is closer to 1 and its complementary.

For η > 0 let us define Γ(t) = {m ∈ T1 : ρ̃(t,m) > η} and set

1

η
=

1− ε
|T1|

∫
T1

dq

ρ̃0(q)
.

On Γ(t),
1

|T1|

∫
T1

dq

ρ̃0(q)
− 1

ρ̃
>

ε

|T1|

∫
T1

dq

ρ̃0(q)
.

With the uniform boundness of the initial density, one can choose a very small ε > 0 such

η = (1− ε)−1|T1|
[∫

T1

dq

ρ̃0(q)

]−1

< 1,

for example

ε < 1− |T1|
[∫

T1

dq

ρ̃0(q)

]−1

.

This is possible provided that the initial density is not identically 1.
On Γc(t), there is no singularity and

1

|T1|

∫
T1

dq

ρ̃0(q)
− 1

ρ̃
6

ε

|T1|

∫
T1

dq

ρ̃0(q)

then one has, with increasing pressure∫ T

0

∫
Γc(t)

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
(t,m)dtdm 6

εTP (η)

|T1|

∫
T1

dq

ρ̃0(q)

thus∫ T

0

∫
Γ(t)

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
(t,m)dtdm 6

∫ T

0

∫
T1

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
(t,m)dtdm

+ εTP (η)

∫
T1

dq

ρ̃0(q)
.

As well∫ T

0

∫
Γ(t)

P (ρ̃) 6

[
ε

1

|T1|

∫
T1

dq

ρ̃(q)

]−1 [∫ T

0

∫
T1

P (ρ̃)

[
1

|T1|

∫
T1

dz

ρ̃0(z)
− 1

ρ̃

]
+
εTP (η)

|T1|

∫
T1

dq

ρ̃0(q)

]
And consequently, P (ρ̃) and ρ̃−1P (ρ̃) are L1((0, T )× T1).

Moreover, using Lemma 4.1.1, there exist two constants C1, and C2 depending only on E0, with
C1 tending to 0 when E0 tends to 0, such that

‖P (ρ̃)‖L1((0,T )×T1) + ‖ρ̃−1P (ρ̃)‖L1((0,T )×T1) 6 C1 + C2T. (4.10)
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Remark 4.2.1. Let us remark that C2 is given by :

C2 = P (η) +
|T1|
2ε

M−1
0

[
|T1|1/2E1/2

0 +M
1/2
0

[
1 + |T1|−1/2M

1/2
0

]]2

and
C1 =

1

ε
M−1

[
2E

1/2
0 M

1/2
0 +

1

2
E0

]
and η and ε do not depend on E0 but only on α0.

Now, we turn back to the proof of Lemma 4.1.3.

Proof of Lemma 4.1.3. Let us rewrite the Navier Stokes system in mass-Lagrangian coordinate{
∂tρ̃+ ρ̃2∂mv = 0,

∂tv + ∂m(P (ρ̃)− ρ̃∂mv) = 0.
(4.11)

Multiplying (4.11)1 by ρ̃−1, one obtains

∂tψ(τ) = −ρ̃∂mv

where ψ is the logarithm function. Then (4.11)2 becomes

∂t (v + ∂mψ(ρ̃)) + ∂mP (ρ̃) = 0. (4.12)

Integrating the above identity on (l, q) with respect to m, and on the T1 with respect to l, one
has :

∂tψ(ρ̃(t, q)) = −P (ρ̃(t, q))− d

dt

∫
T1

∫ q

l

v(t,m)dmdl +

∫
T1

P (ρ̃(t, l))dl −
∫
T1

ρ̃∂mv(t, l)dl. (4.13)

Let us observe that, after the integration over (l, q), one replaces ∂tψ(t, l) by −ρ̃∂mv(t, l) before
integrating on the torus with respect to l. Now, we fix q ∈ T1. For 0 < α < α0, we know that the
set

Aα(q) := {t ∈ [0, T ] : ∀0 6 s 6 t, ρ̃(s, q) 6 1− α}

is not empty since 0 ∈ Aα(q). Let tα(q) be the upper bound of Aα(q). As we don’t know the
monotony of ρ̃(t, ·), namely the sign of ∂mv(t, ·), we are unable to prove that ∀t > tα, ρ̃(t, q) > 1−α.
But, thanks to the continuity of ρ̃, one can write {t > tα(q) : ρ̃(t, q) > 1−α} as union of intervals.
Let (s, t) an interval of the union, for any t′ ∈ (s, t), one has ρ̃(t′, q) > 1− α then

−P (ρ̃(t′, q)) 6 −(1− α)γ

αβ
. (4.14)

Integrating (4.13) between s and t′ one obtains :

ψ(ρ̃(t′, q))− ψ(ρ̃(s, q)) = −
∫ t′

s

P (ρ̃(τ, q))dτ + b(t′)− b(s) (4.15)

with

b(t) =

∫ t

0

∫
T1

P (ρ̃(s, l))dsdl −
∫ t

0

∫
T1

ρ̃∂mv(s, l)dsdl −
∫
T1

∫ q

l

v(t,m)dmdl.
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By following what we did to get (4.10), one obtains :∫ t′

s

∫
T1

P (ρ̃(τ, l))dτdl 6 C1 + C2(t′ − s).

As well, using the energy estimates, ones has∫ t′

s

∫
T1

ρ̃∂mv(τ, l)dτdl 6 E
1/2
0

√
t′ − s 6 E0

2
+

1

2
(t′ − s)

and ∫
T1

∫ q

l

(v(t′,m)− v(s,m))dmdl 6 2E
1/2
0 .

Combining the three above inequalities, one has :

b(t′)− b(s) 6 C(E0) + (C2 +
1

2
)(t′ − s) (4.16)

with a constant C depending on E0 and goes to zero when E0 tends to zero.
Let us take α small such that

C2 +
1

2
6

(1− α)γ

αβ

and combine (4.14), (4.15) and (4.16), to obtain :

ψ(ρ̃(t′, q))− ψ(ρ̃(s, q)) 6 C(E0).

Then, noting that, by continuity of the density, ρ̃(s, q) = 1 − α, one gets other {t > tα : ρ̃(t, q) >
1− α}

ψ(ρ̃(t′, q)) 6 C(E0) + ψ(1− α).

Since C(E0) neither α does not depend on q , we conclude that the density satisfies the bound

ψ(ρ̃) 6 C(E0) + ψ(1− α).

Let us recall that ψ is the logarithm function, so we obtain :

ρ̃ 6 (1− α) exp (C(E0)).

By the Remark 4.2.1, when E0 tends to zero, C2 does not tend to infinity but decreases and
consequently α do not tend to zero so can be bound by below.

Proof of Lemma 4.1.4. The momentum equation in mass-Lagrangian coordinate is written:

∂t (v + ∂mψ(ρ̃)) = −∂mP (ρ̃). (4.17)

Integrating (4.17) on (q,q’) with respect to m and then integrating the obtained equation on the
T1 with respect to q′, and finally on (0,t) in time, one has,

ln (ρ̃(t, q)) =

∫
T1

∫ q

q′
v0(m)dm−

∫
T1

∫ q

q′
v(t,m)dm+

∫
T1

ln (ρ̃(t, q′)) dq′ + ln (ρ̃0(q))

−
∫
T1

ln (ρ̃0(q′)) dq′ +

∫ t

0

∫
T1

P (ρ̃(s, q′)) dq′ds−
∫ t

0

P (ρ̃(s, q)) ds. (4.18)
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From mass conservation equation in mass-Lagrangian coordinate, we have

d

dt

∫
T1

ln (ρ̃(t,m)) dm =

∫
T1

ρ̃(t,m)∂mv(t,m)dm 6

[∫
T1

ρ̃|∂mv|2dm
]1/2

.

Then integrating the above inequality on (0, t) and combining with (4.18), one has

ln (ρ̃(t, q)) 6
∫
T1

∫ q

q′
v0(m)dm−

∫
T1

∫ q

q′
v(t,m)dm+

√
T

[∫ T

0

∫
T1

ρ̃|∂mv|2dm
]1/2

+ ln (ρ̃0(q)) +

∫ t

0

∫
T1

P (ρ̃(s, q′)) dq′ds−
∫ t

0

P (ρ̃(s, q)) ds. (4.19)

Each terms appearing in the right hand side of the above equation can be bounded by a constant
depending only on the initial data and T . This ends the proof.
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CHAPTER 5

WEAK SOLUTIONS À LA HOFF

This chapter is devoted to constructing a distributional solution of the Navier Stokes system with
singular pressure only assuming that the initial energy is small. We use techniques introduced
by Hoff in [12, 13] to obtain for example that the space derivative of the velocity ∂xu belongs to
L1

loc(R+, L∞(T1)). This enables us to formally define the flow associated to the velocity u. In the
sequel, the viscosity is constant taken equal 1 and the pressure is :

P (ρ) =
ργ

(1− ρ)β
. (5.1)

We mainly exploit [4] for Hoff estimates.

5.1 Main result
The existence result of weak solutions à la Hoff is stated in the following theorem.

Theorem 5.1.1. Let u0 ∈ L2(T1), ρ0 ∈ L∞(T1) and assume that there exists α0 > 0 such that

0 < α0 6 ρ 6 1− α0.

Then there exists a non negative constant c such that if the initial energy

E0 :=

∫
T1

ρ0

(
|u0|2 + e(ρ0)

)
with e(ρ0) =

∫ ρ0

ρ0

P (s)− P (ρ0)

s2
ds and ρ0 =

1

|T1|

∫
T1

ρ0(x)dx

satisfies E0 6 c, then there exists

(ρ, u) ∈ L∞(R+, L∞(T1))×
(
L2(R+, H1(T1)) ∩ L∞(R+, L2(T1))

)
distributional solution of the Navier Stokes system :

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xP (ρ) = ∂xxu,

ρ(0) = ρ0, u(0) = u0.

(5.2)
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Moreover,

sup
t

∫
T1

ρ
|u|2

2
+

∫ ∞
0

∫
T1

|∂xu|2 6 E0 (5.3)

and for all T > 0 there exists a constant C(T,E0) such that :∫ T

0

∫
T1

σρ|u̇|2 +
1

2
sup

06t6T
σ(t)

∫
T1

|∂xu(t)|2 6 C,

sup
06t6T

σ2(t)

∫
T1

ρ|u̇(t)|2 +

∫ T

0

∫
T1

σ2|∂xu̇|2 6 C

where σ(t) = min (1, t) and u̇ = ∂tu+ u∂xu the material derivative.

The proof of this theorem is done by a mollifying method : first, we mollify the initial data
(ρ0, u0) to obtain a sequence of regular function (ρn0 , u

n
0 ). The smallness of the initial energy

guarantee, thanks to Theorem 4.1.2 that the Cauchy problem associated to the Navier Stokes
system with the initial data (ρn0 , u

n
0 ) admits, a global classical solution (ρn, un). Finally we prove

that (ρn, un) admits a sub-sequence that converges weakly to (ρ, u) distributional solution of (5.2).
The main difficulty is to identify the weak limit of (P (ρn))n. Everything that follows is devoted to
the proof of the above theorem.

5.2 Uniform estimates

5.2.1 Mollifying of initial data

Let χ : T1 → R+ a smooth function satisfying 0 6 χ 6 1 and
∫
T1

χ(t, x)dx = 1. For all n ∈ N∗, let
us set

χn = nχ(
·
n

); ρn0 = ρ ∗ χn and un0 = u0 ∗ χn.

Using Young inequality and the convolution formula one obtains easily that

∀ n ∈ N∗ α0 6 ρn0 6 1− α0.

The smallness of E0 and the smoothness of ρn0 and un0 ensure that the Cauchy problem
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xP (ρ) = ∂xxu,

ρ(0) = ρn0 , u(0) = un0

(5.4)

admits a unique, classical and global solution (ρn, un) such that ρn ∈ C ([0,+∞), H2(T1)) and
un ∈ C ([0,+∞), H2(T1)) ∩ L2

loc(R+, H3(T1)). Also, there is a small 0 < α = α(E0) < α0 and for
all T > 0 there exists c = c(T ) > 0 such that

∀ n 0 < c 6 ρn 6 1− α. (5.5)

These regularities on ρn and un justify all computations in sections 5.2.2 and 5.2.3.
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Remark 5.2.1. It is important to note that the uniform bound (5.5) of the density ensures that
P (ρn) and P ′(ρn) are bounded in L∞((0, T ) × T1) independently of n because the density is far
from the singular point of P , uniformly in n.

The classical energy estimate leads to the following proposition.

Proposition 5.2.1. For any T > 0

sup
06t6T

E(ρn(t), un(t)) +

∫ T

0

∫
T1

|∂xun|2 6 E0.

In what follows, we use techniques introduced by David Hoff in [12, 13] to obtain two additional
estimates on (ρn, un). Let us recall that (ρn, un) satisfies{

∂tρ
n + ∂x(ρ

nun) = 0,

∂t(ρ
nun) + ∂x (ρn(un)2 + P (ρn)− ∂xun) = 0

(5.6)

and introduce the material derivative u̇n = ∂tu
n + un∂xu

n, ρ̇n = ∂tρ
n + un∂xρ

n and observe that
the above equation can be written as follows :{

ρ̇n = −ρn∂xu,
ρnu̇n + ∂xP (ρn)− ∂xxun = 0.

(5.7)

5.2.2 First Hoff energy

The first estimate consists in multiplying the (5.7)2 by the material derivative of un. The statement
is the following :

Proposition 5.2.2. There exists a constant C(T,E0) such that :∫ T

0

∫
T1

σρn|u̇n|2 +
1

2
sup

06t6T
σ(t)

∫
T1

|∂xun(t)|2 6 C. (5.8)

Proof. Multiplying (5.7)2 by u̇n and integrating on T1, one obtains :∫
T1

ρn|u̇n|2 +

∫
T1

u̇n∂xP (ρn) +

∫
T1

∂xu̇
n∂xu

n = 0.

The last term in the above equation is :∫
T1

∂xu̇
n∂xu

n =
1

2

d

dt

∫
T1

|∂xun|2 +
1

2

∫
T1

(∂xu
n)3

and the second one is :∫
T1

u̇n∂xP (ρn) = − d

dt

∫
T1

P (ρn)∂xu
n −

∫
T1

ρnP ′(ρn) (∂xu
n)2 .

Gathering the three above equations, one obtains :∫
T1

ρn|u̇n|2 +
1

2

d

dt

∫
T1

|∂xun|2 =
d

dt

∫
T1

P (ρn)∂xu
n +

∫
T1

ρnP ′(ρn) (∂xu
n)2 − 1

2

∫
T1

(∂xu
n)3 .
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Next, one multiplies the above equation by σ(s) = min(1, s) and then integrates on (0, t), one
obtains :∫ t

0

∫
T1

σρn|u̇n|2 +
1

2
σ(t)

∫
T1

|∂xun|2 =
1

2

∫ min(1,t)

0

∫
T1

|∂xun|2 + σ(t)

∫
T1

P (ρn)∂xu
n

−
∫ min(1,t)

0

∫
T1

P (ρn)∂xu
n +

∫ t

0

∫
T1

σρnP ′(ρn) (∂xu
n)2 − 1

2

∫ t

0

∫
T1

σ (∂xu
n)3 . (5.9)

The first term of the right hand side of the above equation is controlled, thanks to the classical
energy estimate by E0/2. As well, thanks to the boundedness of P (ρn) and P ′(ρn) in L∞((0, T )×T1)
(see Remark 5.2.1), for ε > 0, one has :

σ(t)

∫
T1

P (ρn)∂xu
n 6 εσ(t)

∫
T1

|∂xu|2 +
1

4ε
σ(t)

∫
T1

P (ρn)2,∫ min(1,t)

0

∫ t

0

P (ρn)∂xu
n 6

∫ min(t,1)

0

∫
T1

|∂xun|2 +

∫ min(t,1)

0

∫
T1

P (ρn)2

and ∫ t

0

σρnP ′(ρn)|∂xun|2 6
∫ t

0

σ‖ρnP ′(ρn)‖L∞(T1)

∫
T1

|∂xun|2.

Gathering the three above equations and owing to the boundedness of the density, one has the
following inequality with a constant C = C(ε, E0)

σ(t)

∫
T1

P (ρn)∂xu
n −

∫ min(1,t)

0

∫ t

0

P (ρn)∂xu
n +

∫ t

0

σρnP ′(ρn)|∂xun|2

6 εσ(t)

∫
T1

|∂xu|2 + C + C

∫ t

0

∫
T1

σ|∂xun|2. (5.10)

It remains estimate for the last term in (5.9).∫ t

0

∫
T1

σ(∂xu
n)3 6

∫ t

0

σ‖∂xun‖2
L2(T1)‖∂xun − P (ρn)‖L∞(T1) +

∫ t

0

σ‖∂xun‖2
L2(T1)‖P (ρn)‖L∞(T1)

6
1

2

∫ t

0

σ1/2‖∂xun − P (ρn)‖2
L∞(T1) +

1

2

∫ t

0

σ3/2‖∂xun‖4
L2(T1)

+

∫ t

0

σ‖∂xun‖2
L2(T1)‖P (ρn)‖L∞(T1).

By Gagliardo Niremberg inequality, one has :

‖∂xun − P (ρn)‖2
L∞(T1) 6 2‖∂xun − P (ρn)‖L2(T1)‖ρnu̇n‖L2(T1) (5.11)

then
1

2

∫ t

0

σ1/2‖∂xun − P (ρn)‖2
L∞(T1) 6 ε

∫ t

0

∫
T1

σρn|u̇n|2 +
1

4ε

∫ t

0

‖∂xun − P (ρn)‖2
L2(T1)

thus, one can write∫ t

0

∫
T1

σ(∂xu
n)3 6 ε

∫ t

0

∫
T1

σρn|u̇n|2 +
1

4ε

∫ t

0

‖∂xun − P (ρn)‖2
L2(T1)

+
1

2

∫ t

0

‖∂xun‖2
L2(T1)

[
σ

∫
T1

|∂xun|2
]

+

∫ t

0

σ‖∂xun‖2
L2(T1)‖P (ρn)‖L∞(T1).
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And thanks to the energy estimate, and the boundedness of the density, one has the following
inequality with a constant C depending on E0 and T :∫ t

0

∫
T1

σ(∂xu
n)3 6 C + ε

∫ t

0

∫
T1

σρn|u̇n|2 + C

∫ t

0

[
1 + ‖∂xun‖2

L2(T1)

] [
σ

∫
T1

|∂xun|2
]
. (5.12)

Gathering (5.9), (5.10) and (5.12), taking ε = 1/4 one has :∫ t

0

∫
T1

σρn|u̇n|2 +
1

2
σ(t)

∫
T1

|∂xun|2 6 C + C

∫ t

0

[
1 + ‖∂xun‖2

L2(T1)

] [
σ

∫
T1

|∂xun|2
]
.

Thus applying the Grönwall lemma, and then Proposition 5.2.1 one obtains :∫ t

0

∫
T1

σρn|u̇n|2 +
1

2
σ(t)

∫
T1

|∂xun|2 6 C

∫ t

0

[
1 + ‖∂xun‖2

L2(T1)

]
6 C ′(T,E0).

Which concludes the proof of the proposition.

5.2.3 Second Hoff energy

The second Hoff energy estimate consists to apply the operator A := ∂t + un · ∂x to the equation
(5.9)2 to obtain higher order estimates. The statement is the following.

Proposition 5.2.3. There exists a constant C = C(T,E0) such that :

sup
06t6T

σ2(t)

∫
T1

ρn|u̇n(t)|2 +

∫ T

0

∫
T1

σ2|∂xu̇n|2 6 C. (5.13)

Proof. Let us begin the proof by the following computations :∫
T1

u̇n (∂t + un) (ρnu̇n) =

∫
T1

u̇n∂t (ρnu̇n) +

∫
T1

u̇nun∂x (ρnu̇n)

=
d

dt

∫
T1

ρn|u̇n|2 −
∫
T1

ρnu̇n∂tu
n −

∫
T1

ρnu̇n∂x (u̇nun)

=
1

2

d

dt

∫
T1

ρn|u̇n|2 +

∫
T1

|u̇n|2∂tρn −
∫
T1

ρnun∂x
|u̇n|2

2
−
∫
T1

ρn|u̇n|2∂xun

=
1

2

d

dt

∫
T1

ρn|u̇n|2 +

∫
T1

|u̇n|2 (∂tρ
n + ∂x (ρnun))−

∫
T1

ρn|u̇n|2∂xun

so ∫
T1

u̇n (∂t + un · ∂x) (ρnu̇n) =
1

2

d

dt

∫
T1

ρn|u̇n|2 −
∫
T1

ρn|u̇n|2∂xun. (5.14)

Next,∫
T1

u̇n (∂t + un∂x) ∂xP (ρn) =

∫
T1

u̇n∂txP (ρn) +

∫
T1

u̇nun∂xxP (ρn)

= −
∫
T1

∂xu̇
nP ′ (ρn) ∂tρ

n +

∫
T1

u̇nun∂xxP (ρn)

=

∫
T1

P ′ (ρn) ∂xu̇
n∂x (ρnun) +

∫
T1

u̇nun∂xxP (ρn)

=

∫
T1

un∂xu̇
n∂xP (ρn) +

∫
T1

ρnP ′ (ρn) ∂xu
n∂xu̇

n −
∫
T1

∂x (u̇nun) ∂xP (ρn)

=

∫
T1

ρnP ′ (ρn) ∂xu
n∂xu̇

n −
∫
T1

u̇n∂xu
n∂xP (ρn) .
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By the momentum equation, one has ∂xP (ρn) = ∂xxu
n − ρnu̇n, then∫

T1

u̇n (∂t + un∂x) ∂xP (ρn) =

∫
T1

ρn|u̇n|2∂xun −
∫
T1

u̇n∂xu
n∂xxu

n +

∫
T1

ρnP ′ (ρn) ∂xu
n∂xu̇

n

=

∫
T1

ρn|u̇n|2∂xun +
1

2

∫
T1

|∂xun|2∂xu̇n +

∫
T1

ρnP ′ (ρn) dpxun∂xu̇
n. (5.15)

As well ∫
T1

u̇n (∂t + un∂x) ∂xxu
n = −

∫
T1

∂xu̇
n∂txu

n −
∫
T1

∂xxu
n∂x (unu̇n) . (5.16)

The last term of the right hand side of the above equation is :∫
T1

∂xxu
n∂x (unu̇n) =

∫
T1

u̇n∂xxu
n∂xu

n +

∫
T1

un∂xxu
n∂xu̇

n

= −1

2

∫
T1

|∂xun|2∂xu̇n −
∫
T1

∂xu
n∂x (un∂xu̇

n)

= −3

2

∫
T1

∂xu̇
n|∂xun|2 −

∫
T1

un∂xu
n∂xxu̇

n;

so ∫
T1

∂xxu
n∂x (unu̇n) =

∫
T1

∂x (un∂xu
n) ∂xu̇

n − 3

2

∫
T1

∂xu̇
n|∂xun|2. (5.17)

Then combining (5.16) and (5.17), one has :∫
T1

u̇n (∂t + un · ∂x) ∂xxun =
3

2

∫
T1

∂xu̇
n|∂xun|2 −

∫
T1

∂x (un∂xu
n) ∂xu̇

n −
∫
T1

∂xu̇
n∂txu

n

=
3

2

∫
T1

∂xu̇
n|∂xun|2 −

∫
T1

∂xu̇
n∂x (∂tu

n + un∂xu
n)

∫
T1

u̇n (∂t + un · ∂x) ∂xxun =
3

2

∫
T1

∂xu̇
n|∂xun|2 −

∫
T1

|∂xu̇n|2. (5.18)

Applying the operator ∂t+un ·∂x to (5.7)2, next multiplying by u̇n, integrating on T1 and gathering
(5.14), (5.15) and (5.18), one obtains :

1

2

d

dt

∫
T1

ρn|u̇n|2 +

∫
T1

|∂xu̇n|2 =

∫
T1

|∂xun|2∂xu̇n −
∫
T1

ρnP ′(ρn)∂xu
n∂xu̇

n.

Next multiply the above equation by σ2 and integrate in time on (0, t), one has :

1

2
σ2(t)

∫
T1

ρn|u̇n|2 +

∫ t

0

∫
T1

σ2|∂xu̇n|2 =

∫ min(1,t)

0

σ

∫
T1

ρn|u̇n|2 +

∫ t

0

∫
T1

σ2|∂xun|2∂xu̇n

−
∫ t

0

∫
T1

σ2ρnP ′(ρn)∂xu
n∂xu̇

n. (5.19)
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The first term of the right hand side of the above equation is easily controlled thanks to the
classical energy estimate. The last one is estimated, because of the boundedness of P ′(ρn) in
L∞((0, T )× T1) (see Proposition 5.2.1), as follows :∣∣∣∣∫ t

0

∫
T1

σ2ρnP ′(ρn)∂xu
n∂xu̇

n

∣∣∣∣ 6 ε

∫ t

0

∫
T1

σ2|∂xu̇n|2 +
1

4ε
‖ρnP ′(ρn)‖2

L∞(T1)

∫ t

0

∫
T1

σ2|∂xun|2.

Thanks to the energy estimates and the boundedness of the density, one has :∣∣∣∣∫ t

0

∫
T1

σ2ρnP ′(ρn)∂xu
n∂xu̇

n

∣∣∣∣ 6 ε

∫ t

0

∫
T1

σ2|∂xu̇n|2 + C1 (5.20)

with C1 a constant depending only on T , ε and E0. It remains to estimate
∫ t

0

∫
T1

σ2|∂xun|2∂xu̇n.
One has : ∣∣∣∣∫ t

0

∫
T1

σ2|∂xun|2∂xu̇n
∣∣∣∣ 6 1

4

∫ t

0

∫
T1

σ2|∂xu̇n|2 +

∫ t

0

σ2‖∂xun‖4
L4(T1). (5.21)

The last term of the above equation can be estimate as follows :∫ t

0

σ2‖∂xun‖4
L4(T1) 6

∫ t

0

σ2‖∂xun‖2
L∞(T1)

∫
T1

|∂xun|2 6 sup
06s6t

σ2(s)‖∂xun(s)‖2
L∞(T1)

∫ t

0

∫
T1

|∂xun|2.

(5.22)

By the classical energy estimate,
∫ t

0

∫
T1

|∂xun|2 is controlled by E0, but

σ2(t)‖∂xun(t)‖2
L∞(T1) 6 2σ2(t)‖∂xun(t)− P (ρn(t))‖2

L∞(T1) + 2σ2‖P (ρn)‖2
L∞(T1)

6 2σ2(t)‖∂xun(t)− P (ρn(t))‖L2(T1)‖ρnu̇n‖L2(T1) + 2σ2‖P (ρn)‖2
L∞(T1)

6
1

2ε

(
σ2‖∂xun‖2

L2(T1) + σ2‖P (ρn)‖2
L2(T1)

)
+ ε

∫
T1

σ2ρn|u̇n|2

+ 2σ2‖P (ρn)‖2
L∞(T1).

Owning to the previous energy estimates Proposition 5.2.2 and the boundedness of P (ρn) in
L∞((0, T )× T1) Proposition 5.2.1, there exists a constant C2(ε, T, E0) such that

σ2(t)‖∂xun(t)‖2
L∞(T1) 6 ε

∫
T1

σ2ρn|u̇n|2 + C2. (5.23)

Gathering (5.21), (5.22) and (5.23), one obtains :∣∣∣∣∫ t

0

∫
T1

σ2|∂xun|2∂xu̇n
∣∣∣∣ 6 1

4

∫ t

0

∫
T1

σ2|∂xu̇n|2 + E0

[
C2 + ε

∫
T1

σ2ρn|u̇n|2
]
. (5.24)

Next, gathering (5.19), (5.20) and (5.24) one has the following estimate with a constant C3 =
C3(T,E0)

σ2(t)

∫
T1

ρn|u̇n|2 +

∫ t

0

∫
T1

σ2|∂xu̇n|2 6 C3

[
1 +

∫ t

0

∫
T1

σ2ρn|u̇n|2
]
.

Applying the Grönwall lemma, one obtains :

sup
06t6T

σ2(t)

∫
T1

ρn|u̇n(t)|2 +

∫ T

0

∫
T1

σ2|∂xu̇n|2 6 C4(T,E0).
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5.3 Passage to the limit
According to Proposition 5.2.1 sequence (un)n is bounded in L2((0, T ), H1(T1)), but one has only
a weak convergence despite the fact that the embedding H2(T1) ↪→ L2(T1) is compact. To pass
to the limit in nonlinear terms (ρnun)n and (ρn(un)2)n one needs a strong convergence on (ρn)n or
(ρnun)n. For this end, let us use the compactness lemma of Aubin-Lions Lemma A.3.1 similar to
the one of Ascoli-Arzéla.

5.3.1 Main steps of the proof

Proposition 5.3.1. Sequence (ρn)n is compact in C ([0, T ], H−1(T1)) whereas (ρnun)n is compact
in L2((0, T ), H−1(T1)).

Remark 5.3.1. By this proposition, up to extraction, there exists ρ ∈ C ([0, T ], H−1(T1)) such
that :

(ρn)n −→ ρ in C ([0, T ], H−1(T1)).

On the other hand, as (un)n is bounded in L2((0, T ), H1(T1)) then, up to extraction, (un)n con-
verges weakly to some u in L2((0, T ), H1(T1)). Therefore (ρnun)n −→ ρu in D′((0, T ) × T1). This
implies that (ρnun)n converges strongly to ρu in L2((0, T ), H−1(T1)) and adding the fact that (un)n
converges weakly to u in L2((0, T ), H1(T1)) one has (ρn(un)2)n −→ ρu2 in D′((0, T )×T1). As (ρn)n
is bounded in L∞((0, T )× T1), so (ρnun)n is bounded in L∞((0, T ), L2(T1)) and by the mass con-
servation equation, (∂tρ

n)n is bounded in L∞((0, T ), H−1(T1)) so up to extraction, (∂tρ
n)n ⇀

∗ ∂tρ
in L∞((0, T ), H−1(T1)). Consequently, ρ and u satisfy, in sense of distribution the mass equation :

∂tu+ ∂x(ρu) = 0.

For the momentum equation, (P (ρn))n is bounded in L∞((0, T ) × T1) and (un)n is bounded in
L2((0, T ), H1(T1)), then (∂t(ρ

nun) = ∂xxu
n − ∂xP (ρn)− ∂x(ρn(un)2))n is bounded in L2((0, T ), H−1(T1))

so converges weakly to ∂tρu in L2((0, T ), H−1(T1)). As well (P (ρn))n ⇀
∗ P (ρ) in L∞((0, T )×T1).

One concludes that ρ and u satisfy the following equation in sense of distribution.

∂t(ρu) + ∂x(ρu
2) + ∂xP (ρ)− ∂xxu = 0.

It remains to prove that P (ρ) = P (ρ).

We will use the renormalized solution theory introduced by Pierre Louis Lions [18], see also
[21] and theory of convex function to obtain a strong convergence of (ρn)n to ρ in a Lebesgue
space. Which ensures that (ρn)n converges almost everywhere to ρ and then, one can deduces that
P (ρ) = P (ρ) by Lemma A.3.2.

Multiplying the mass conservation equation (5.6)1 by b′(ρn) where b ∈ C 1(0, 1), one has

∂tb(ρ
n) + ∂x(b(ρ

n)un) + [ρnb′(ρn)− b(ρn)] ∂xu
n = 0.

In particular, for b(t) = t log(t), the above equation becomes

∂tρ
n log(ρn) + ∂x(ρ

n log(ρn)un) + ρn∂xu
n = 0. (5.25)

In the following we will pass to the weak limit in the above equation. To this end, we will use
Lemma A.3.3 that gives the weak limit of the product of two weak convergence in Lebesgue space.
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Lemma 5.3.1. Sequence (ρn log(ρn))n converges weakly to some ρ log(ρ) that satisfies we following
equation :

∂tρ log(ρ) + ∂x

(
ρ log(ρ)u

)
+ ρ∂xu = ρP (ρ)− ρP (ρ) in D′((0, T )× T1). (5.26)

Remark 5.3.2. Recall that ρ ∈ L∞((0, T )× T1), u ∈ L2((0, T ), H1(T1)) satisfy

∂tρ+ ∂x(ρu) = 0.

The function b(t) = t ln(t) is continuous on [0, 1] provided that it is extended by 0 at t = 0 and
b ∈ C (0, 1). As lim

t→0
t1/2 log(t) = 0 one can use b in Lemma A.3.4 and obtains :

∂t(ρ log ρ) + ∂x(ρ log(ρ)u) + ρ∂xu = 0. (5.27)

Then substituting (5.29) and (5.27), one has :

∂t
(
ρ log ρ− ρ log ρ

)
+ ∂x

(
(ρ log ρ− ρ log ρ)u

)
= ρP (ρ)− ρP (ρ).

In the following, we will prove that ρP (ρ)− ρP (ρ) 6 0. To do so one will use Lemma A.3.5.

Lemma 5.3.2. One has :

∂t
(
ρ log ρ− ρ log ρ

)
+ ∂x

(
(ρ log ρ− ρ log ρ)u

)
6 0. (5.28)

The only strong continuity ρ that we have at this time is that ρ is continuous in values in H−1(T1).
Using Lemma A.3.7, one has the following.

Lemma 5.3.3. One has ρ log(ρ) ∈ C ([0, T ], Lp(T1)) for all 1 6 p < 2.

Then integrating (5.28) on the torus, one obtains the following :

Lemma 5.3.4. ∫
T1

(
ρ log ρ− ρ log ρ

)
(t) 6 0

Therefore ρ log ρ = ρ log ρ almost everywhere and consequently as the function t 7→ t log t is strictly
convex, one deduces that (ρn)n

n→∞−−−→ ρ strongly in L1((0, T )×T1). This result is proved in [8]. In
particular (ρn)n converges almost everywhere to ρ and as P is continuous and (ρn)n is uniformly
far from 1, (P (ρn))n converges almost everywhere to P (ρ) and as (P (ρn))n converges weakly to
P (ρ) then P (ρ) = P (ρ). In fact this is due to Lemma A.3.2. Consequently the existence part of
Theorem 5.1.1 follows.

5.3.2 Some remarks

Let us recall that we proved two additional estimates (5.8) and (5.13) that give, because of the
uniform bound of ρn (5.5), a L2((0, T ) × T1) bound on (σ1/2u̇n))n and the effective flux F n =
∂xu

n−P (ρn) is such that (σ1/2∂xF )n is bounded in L2((0, T )×T1). This implies a weak convergence
of (σ1/2u̇n)n to some σ1/2v ∈ L2((0, T ) × T1). By considering the measure σdx instead of the
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Lebesgue measure dx, one proves that estimates (5.8) and (5.13) are conserved after passing to
the limit. In the following lines we will prove that v = u̇.

Coming back to (5.11), one has the following

σ1/2‖∂xun‖2
L∞(T1) 6 2σ‖∂xun − P (ρn)‖2

L∞(T1) + 2‖P (ρn)‖2
L∞(T1)

6 4σ‖∂xun − P (ρn)‖L2(T1)‖ρnu̇n‖2
L2(T1) + 2‖P (ρn)‖2

L∞(T1)

6 2σ‖∂xun − P (ρn)‖2
L2(T1) + 2

∫
T1

σρn|u̇n|2 + 2‖P (ρn)‖2
L∞(T1)

Then integrate in time on (0, T ) and use the classical energy estimate (5.3), the first Hoff energy
(5.8) and the uniform bound on the density, one has :∫ t

0

σ1/2‖∂xun‖2
L∞(T1) 6 C2(T,E0).

Next, by Cauchy Schwartz inequality, one has :∫ T

0

‖∂xun‖L∞(T1) 6

[∫ T

0

σ−1/2

]1/2 [∫ T

0

σ1/2‖∂xun‖2
L∞(T1)

]1/2

Near 0, σ−1/2(t) behaves like t−1/2, then the factor
∫ T

0

σ−1/2 is integral, thus one concludes

that (∂xu
n)n is bounded in L1((0, T ), L∞(T1)). As we prove, (un)n converges weakly to u in

L2((0, T ), H1(T1)), it follows that ∂xu ∈ L1((0, T ), L∞(T1)).
By the first Hoff estimate (5.8),

(
σ1/2ρ1/2u̇n

)
n
is bounded in L2((0, T ) × T1) and owing to

the boundedness of (un)n in L2((0, T ), H1(T1)) and the uniform bound on the density, one has
(σ1/2∂tu

n = σ1/2u̇n− σ1/2un∂xu
n)n bounded in L2((0, T )×T1) and so converges, up to extraction,

in sense of distribution to σ1/2∂tu. Consequently, one has u Holder in time, indeed, for almost
every 0 6 s < t 6 T , one has :

u(t, x)− u(s, x) =

∫ t

s

∂tu(τ, x)dτ =⇒
σ1/2(s)‖u(t)− u(s)‖L2(T1)

(t− s)1/2
6 ‖σ1/2∂tu‖L2((0,T )×T1).

Furthermore, owing to the boundedness of (un)n in L2((0, T ), H1(T1)), so (un∂xu
n)n admits a

subsequence that converges in sense of distribution to u∂xu. It follows that v = u̇. Finally,
because ∂xu ∈ L1((0, T ), L∞(T1)), one has :

u(t, x)− u(t, y) =

∫ x

y

∂xu(t, z)dz =⇒
∣∣∣∣u(t, x)− u(t, y)

x− y

∣∣∣∣ 6 ‖∂xu(t)‖L∞(T1).

5.3.3 Proofs

Proof of Proposition 5.3.1. In one dimension, the Sobolev embedding L2(T1) ↪→ H−1(T1) is com-
pact. As T1 is a bounded set, L∞(T1) ↪→ L2(T1) is a continuous embedding, then the em-
bedding L∞(T1) ↪→ H−1(T1) is compact. From Proposition 5.2.1, one has (ρnun)n bounded in
L2((0, T ) × T1) then by the mass equation (∂tρ

n)n is bounded in L2((0, T ), H−1(T1)). Then ap-
plying Lemma A.3.1 with X1 = L∞(T1) and X = X2 = H−1(T1) one obtains the first part of the
proposition.
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From Proposition 5.2.1 and Remark 5.2.1, one has (∂xxu
n)n bounded in L2((0, T ), H−1(T1))

and (∂xP (ρn))n, (∂x(ρ
n(un)2)n are bounded in L1((0, T ), H−1(T1)), and therefore, one concludes

that (∂t(ρ
nun))n is bounded in L1((0, T ), H−1(T1)). By Hölder inequality, (ρnun)n is bounded

in L2((0, T ) × T1), thus using Aubin-Lions Lemma A.3.1, one obtains the second part of the
proposition.

Proof of Lemma 5.3.1. We know that (ρn)n is bounded in L∞((0, T ) × T1) so, in particular, in
L2((0, T ) × T1). The fact that (ρn)n is bounded in L∞((0, T ) × T1) and (un)n is bounded in
L2((0, T ), H1(T1)), leads to, thanks to mass conservation equation (5.6)1 (∂tρ

n)n bounded in
L2((0, T ), H−1(T1)). Let us set F n = ∂xu

n − P (ρn) the so-called effective flux. By the first
Hoff energy estimate Proposition 5.2.2,

(
σ1/2∂xF

n
)
n
is bounded in L2((0, T )× T1) and therefore

lim
ξ→0
‖σ1/2 (F n(·+ ξ)− F )‖L2((0,T )×T1) = 0.

Indeed

|F n(t, x+ ξ)− F n(t, x)| 6
∫ x+ξ

x

|∂xF n(t, y)|dy =⇒

‖σ1/2 (F n(·+ ξ)− F )‖L2((0,T )×T1) 6 |ξ|1/2 ‖σ1/2∂xF
n‖L2((0,T )×T1)︸ ︷︷ ︸

bounded

ξ→0−−→ 0

Then using the Lemma A.3.3 one has
(
σ1/2ρn (∂xu

n − P (ρn))
)
n
−→ σ1/2ρ

(
∂xu− P (ρ)

)
inD′([0, T ]×

T1). We know that (ρnP (ρn))n is bounded in L∞((0, T )×T1) so, up to extraction, (ρnP (ρn))n ⇀
∗

ρP (ρ) in L∞((0, T ) × T1) then (σ1/2ρn∂xu
n)n −→ σ1/2

(
ρ∂xu+ ρP (ρ)− ρP (ρ)

)
in D′([0, T ] × T1).

Let us prove that (ρn∂xu
n)n −→ ρ∂xu+ρP (ρ)−ρP (ρ) in D′((0, T )×T1). Giving ϕ ∈ D((0, T )×T1).

There exists a large N such that suppϕ ⊂ (
1

N
, T )×T1 so σ−1/2ϕ is well defined and with compact

support but not too regular to use as test function because σ′ is a Heaviside. To get around the
difficulty, one use a mollifying σ−1/2

ε sequence of σ−1/2. Using σ−1/2
ε ϕ as test function, one has :∫ T

0

∫
T1

σ1/2σ−1/2
ε ϕρn∂xu

n n→∞−−−→
∫ T

0

∫
T1

σ1/2σ−1/2
ε ϕ

(
ρ∂xu+ ρP (ρ)− ρP (ρ)

)
.

By dominated convergence theorem,∫ T

0

∫
T1

ϕρn∂xu
n = lim

ε→0

∫ T

0

∫
T1

σ1/2σ−1/2
ε ϕρn∂xu

n

and ∫ T

0

∫
T1

σ1/2σ−1/2
ε ϕ

(
ρ∂xu+ ρP (ρ)− ρP (ρ)

)
ε→0−−→

∫ T

0

∫
T1

ϕ
(
ρ∂xu+ ρP (ρ)− ρP (ρ)

)
.

Consequently, ∫ T

0

∫
T1

ϕρn∂xu
n n→∞−−−→

∫ T

0

∫
T1

ϕ
(
ρ∂xu+ ρP (ρ)− ρP (ρ)

)
for any ϕ ∈ D((0, T )× T1). Therefore (ρn∂xu

n)n −→ ρ∂xu+ ρP (ρ)− ρP (ρ) in D′((0, T )× T1).
Also sequence (ρn log(ρn))n is bounded in L∞((0, T ) × T1) and by (5.25), (∂tρ

n log(ρn))n is
bounded in L2((0, T ), H−1(T1)) + L2((0, T ) × T1) ⊂ L2((0, T ), H−1(T1)) then by Lemma A.3.1
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(ρn log(ρn))n is compact in L2((0, T ), H−1(T1)), so up to extraction, sequence (ρn log(ρn))n con-
verges strongly in L2((0, T ), H−1(T1)) to some ρ log(ρ) and as (un)n ⇀ u in L2((0, T ), H1(T1)),
then (ρn log(ρn))nu

n −→ ρ log(ρ)u in D′((0, T )× T1) and ((∂x (ρn log(ρn)un))n −→ ∂x

(
ρ log(ρ)u

)
in

D′((0, T )× T1). Finally as (∂t(ρ
n log(ρn)))n is bounded in L2((0, T ), H−1(T1)), then up to extrac-

tion, (∂t(ρ
n log(ρn))) converges in sense of distribution to ∂tρ log(ρ). Then passing to the weak

limit in (5.25), one obtains :

∂tρ log(ρ) + ∂x

(
ρ log(ρ)u

)
+ ρ∂xu = ρP (ρ)− ρP (ρ). (5.29)

Proof of Lemma 5.3.2. The pressure (5.1) is a non decreasing function and (ρn)n is bounded in
L∞((0, T )×T1) so in L1((0, T )×T1) then (ρn)n converges weakly to ρ in L1((0, T )×T1). According
to Remark 5.2.1, (P (ρn))n is bounded in L∞((0, T )×T1) so in L1((0, T )×T1) then converges weakly
to P (ρ) in L1((0, T )×T1). It is obvious that

(
(P (ρn)− P (ρ))ρ

)
n
⇀ 0 in L1((0, T )×T1) since, for

any ϕ ∈ L∞((0, T )×T1) one can use ρϕ as test function in the formulation of the weak convergence
(P (ρn))n ⇀ P (ρ) in L1((0, T )× T1). Also (P (ρn)ρn)n is bounded in L1((0, T )× T1) so converges
weakly to some P (ρ)ρ in L1((0, T )×T1). Finally, for any ϕ ∈ L∞((0, T )×T1) one can use P (ρ)ϕ as
test function in the weak convergence (ρn)n ⇀ ρ in L1((0, T )×T1) and obtains (P (ρ)ρn)n ⇀ P (ρ)ρ

in L1((0, T )×T1). Then using Lemma A.3.5, one concludes that P (ρ)ρ > ρP (ρ) almost everywhere
and the lemma follows.

Proof of Lemma 5.3.3. We know that L2(T1) embeds continuously (compactly) in H−1(T1) and
the dual of H−1(T1), that to say H1(T1) is separable and dense in L2(T1). As by the mass
conservation equation (∂tρ

n)n and by (5.25), (∂t(ρ
n log(ρn)))n are bounded in L2((0, T ), H−1(T1)),

one obtains for any ϕ ∈ H1(T1), mappings

t 7→ 〈ρn(t), ϕ〉H−1(T1),H1(T1) and t 7→ 〈(ρn log ρn)(t), ϕ〉H−1(T1),H1(T1)

are uniformly continuous in t ∈ [0, T ] uniformly in n. Applying the Lemma A.3.6 one obtains,
(ρn)n and (ρn log(ρn))n are compact in C ([0, T ], L2

w(T1)). Therefore, up to extraction

(ρn)n −→ ρ in C ([0, T ], L2
w(T1)) and (ρn log ρn)n −→ ρ log ρ in C ([0, T ], L2

w(T1)).

In particular, ρ ∈ C [0, T ], L2
w(T1)) and as we know ρ ∈ L∞((0, T ) × T1), u ∈ L2((0, T ), H1(T1))

and satisfy in D′((0, T )× T1) the transport equation

∂tρ+ ∂x(ρu) = 0,

so by Lemma A.3.4, for all θ ∈ (0, 1/2)

∂tρ
θ + ∂x(ρ

θu) + (θ − 1)ρθ∂xu = 0 in D′((0, T )× T1).

and together with Lemma A.3.7, one concludes that ρ ∈ C ([0, T ], Lp(T1)) for any 1 6 p < 2. This
last result allows us to obtain ρ log ρ ∈ C ([0, T ], Lp(T1)) since, by mean value theorem,

‖ρ log ρ(t)− ρ log ρ(s)‖Lp(T1) 6 (1− log(α))‖ρ(t)− ρ(s)‖Lp(T1).
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Proof of Lemma 5.3.4. Let ϕ ∈ C 1
c (T1) such that ϕ = 1 on B(0, 1/2) and suppϕ ⊂ B(0, 1). For

any R > 0 let us define ϕR = ϕ(·/R). One can use ϕR as test function in (5.28), and then obtains :[∫
T1

(
ρ log ρ− ρ log ρ

)
ϕR
]t
s

− 1

R

∫ t

s

∫ 1

T

(
ρ log ρ− ρ log ρ

)
u∂xϕ(·/R) 6 0. (5.30)

As ρ log ρ ∈ C ([0, T ], L1(T1)) and ρ log ρ ∈ C ([0, T ], L1
w(T1)) then,

ρ log ρ− ρ log ρ ∈ C ([0, T ], L1
w(T1))

so
τ 7→

∫
T1

(
ρ log ρ− ρ log ρ

)
(τ)ϕR

is continue, in particular

lim
s→0

∫
T1

(
ρ log ρ− ρ log ρ

)
(s)ϕR = 0

Letting s goes to 0 in (5.30), one obtains, for each R,∫
T1

(
ρ log ρ− ρ log ρ

)
(t)ϕR − 1

R

∫ t

0

∫ 1

T

(
ρ log ρ− ρ log ρ

)
u∂xϕ(·/R) 6 0. (5.31)

In other hand,

1

R

∣∣∣∣∫ t

s

∫ 1

T

(
ρ log ρ− ρ log ρ

)
u∂xϕ(·/R)

∣∣∣∣ 6 1

R2/3
‖∂xϕ‖L3(T1)

∫ t

s

‖ρ log ρ− ρ log ρu‖L3/2(T1)
R→∞−−−→ 0.

(5.32)

As well, as ρ log ρ − ρ log ρ ∈ C ([0, T ], L1
w(T1)), ρ log ρ − ρ log ρ(t) ∈ L1(T1). Using the fact that

ϕR
R→∞−−−→ 1 a.e and bounded in L∞(T1), one obtains by dominated convergence∫

T1

(
ρ log ρ− ρ log ρ

)
(t)ϕR

R→∞−−−→
∫
T1

(
ρ log ρ− ρ log ρ

)
(t). (5.33)

Finally gathering (5.31), (5.32) and (5.33) one obtains after letting R to go to infinity∫
T1

(
ρ log ρ− ρ log ρ

)
(t) 6 0.
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APPENDIX

In the following, we state results that we use is the note.

A.1 Liouville’s transport equation
Theorem A.1.1. Let d ∈ N∗, Ω ⊂ Rd, I an interval of R+ and u : I × Ω → Rd ∈ C 1 be vector
fields. If V ⊂ Ω supposed to be adverted by the flow Xt of u. Then, for any f : I × Ω → R ∈ C 1,
one has :

d

dt

∫
Xt(V )

f(t, x)dx =

∫
Xt(V )

[∂tf(t, x) + div(fu)(t, x)] dx. (A.1)

Corollary A.1.1. Let d ∈ N∗, Ω ⊂ Rd, I an interval of R+ and u : I × Ω → Rd ∈ C 1 be
vector fields of a fluid of density ρ. If V ⊂ Ω supposed to be adverted by the flow Xt of u. For
f : I × Ω→ R ∈ C 1, let us define

g(t) =

∫
Xt(V )

ρ(t, x)f(t, x)dx.

Then
dg

dt
(t) =

∫
Ωt

ρ(x, t)ḟ(x, t)dx (A.2)

were ḟ = ∂tf + u · ∇f is the material derivative of f .

A.2 Grönwall’s lemma
Lemma A.2.1. Let ϕ, ψ, y : [a, b]→ R+ three positives and continuous functions satisfying :

∀ t ∈ [a, b], y(t) = ϕ(t) +

∫ t

a

ψ(s)y(s)ds (A.3)

then

∀ t ∈ [a, b] y(t) 6 ϕ(t) +

∫ t

a

ϕ(s)ψ(s) exp

(∫ t

s

ψ(τ)dτ

)
ds.
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Corollary A.2.1. Let ψ, y : [a, b]→ R+ two continuous functions. Assume that there exists c > 0
such that

∀ t ∈ [a, b] y(t) 6 c+

∫ t

a

ψ(s)y(s)ds

then

∀ t ∈ [a, b] y(t) 6 c× exp

(∫ t

a

ψ(s)ds

)
.

A.3 Some useful results
The following lemma is the compactness lemma of Aubin-Lions similar to the Ascoli-Arzela’s one.

Lemma A.3.1. Let X1, X and X2 three Banach spaces. Assume that X1 is compactly embedded
X, whereas the embedding of X in X2 just continuous. For 1 6 p, q 6∞ let us define

W = {u ∈ Lp((0, T ), X1) : ∂tu ∈ Lq((0, T ), X2)} .

1. If p <∞ then the embedding of W into Lp((0, T ), X) is compact.

2. if p = +∞ and q <∞ the the embedding of W into C ([0, T ], X) is compact.

The following result is exercise 4.16 of [3].

Lemma A.3.2. Let 1 < p <∞ and (ϕn)n be a sequence of Lp((0, T )× T1) such that :

1. (ϕn)n is bounded in Lp((0, T )× T1);

2. (ϕn)n −→ ϕ a.e on (0, T )× T1;

Then (ϕn)n ⇀ ϕ in Lp((0, T )× T1) .

The following result is the Lemma 5.2 of [18].

Lemma A.3.3. Let ϕn, ψn converge weakly to ϕ, ψ, respectively in Lp1((0, T ), Lp2(T1)) and in
Lq1((0, T ), Lq2(T1)) where 1 6 p1, p2 6∞,

1

p1

+
1

q1

=
1

p2

+
1

q2

= 1.

Assume in addition that ∂tϕn is bounded in L1((0, T ),W−m,1(T1)) for some m ∈ N∗ and

‖ψn(·+ ξ)− ψn‖Lq1 ((0,T ),Lq2 (T1))
ξ→0−−→ 0

uniformly in n. Then ϕnψn converges to ϕψ in sense of distribution.

The following is the Lemma 6.4 of [21].

Lemma A.3.4. Let 2 6 β <∞, b ∈ C ([0, 1]) ∩ C ((0, 1] such that |b′(t)| 6 ct−λ for some positive
constant c and real number λ such that λ < 1,

ρ > 0 a.e and, ρ ∈ Lβ((0, T )× T1) and u ∈ L2((0, T ), H1(T1))

and
∂tρ+ ∂x(ρu) = 0 in D′((0, T )× T1))

Then,
∂tb(ρ) + ∂x(b(ρ)u) + [ρb′(ρ)− b(ρ)] ∂xu = 0 in D′((0, T )× T1)).

48 Singular pressures in the mechanics of compressible fluids



A.3. Some useful results Appendix A. Appendix

The following result is the lemma 3.35 of [21].

Lemma A.3.5. Let Ω a bounded set of Rd, d ∈ N∗, I an interval in R and P : I → R a non
decreasing function. Let (ϕn)n a sequence of functions of L1(Ω) with values on I such that :

ϕn ⇀ ϕ in L1(Ω);

P (ϕn) ⇀ P (ϕ) in L1(Ω);

P (ϕn)ϕ ⇀ P (ϕ)ϕ in L1(Ω);

P (ϕn)ϕn ⇀ P (ϕ)ϕ in L1(Ω);

P (ϕ)(ϕn − ϕ) ⇀ 0 in L1(Ω).

Then P (ϕ)ϕ > P (ϕ)ϕ.

The following result is taken from appendix C of [17].

Definiton A.3.1. Let X be Banach space and I ⊂ R an interval. We denote by C (I,X −w) the
space of continuous functions on I with values in X equipped with the weak topology.

ϕ : I → X ∈ C (I,X − w)⇐⇒ ∀ F ∈ X ′ t 7→ 〈F, ϕ(t)〉X′,X ∈ C (I)

The following compactness result in C (I,X − w) follows :

Lemma A.3.6. Let X be separable Banach space and ϕn bounded in L∞((0, T ), X) for some
T > 0. We assume that ϕn ∈ C ([0, T ], Y ) where Y is a Banach space such that X ↪→ Y , Y ′ is
separable and dense in X ′. Furthermore, we assume that for all ψ ∈ Y ′, the map t 7→ 〈ψ, ϕ(t)〉Y ′,Y
is uniformly continuous in t ∈ [0, T ] and uniformly in n.

Then ϕn is compact in C ([0, T ], X − w)

This result is the lemma 6.15 of [21].

Lemma A.3.7. Let 1 < β <∞, θ ∈ (0, β/4). Assume that the couple (ρ, u) satisfies :

ρ > 0 a.e, ρ ∈ Lβ((0, T )× T1) ∩ C ([0, T ], Lβw(T1)), u ∈ L2((0, T ), H1(T1))

and satisfies
∂tρ

θ + ∂x(ρ
θu) + (θ − 1)ρθ∂xu = 0 in D′((0, T )× T1).

Then ρ ∈ C ([0, T ], Lp(T1)) for 1 6 p < β.
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