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CHAPTER 1

INTRODUCTION

In fluid mechanics, the Navier Stokes system for a compressible fluid is a system of nonlinear partial
differential equations that describe the motion of a fluid through the study of its velocity field, its
density and its internal energy. This system was introduced after the observations of Euler in the
middle of the 18th century and of Navier in 1827, Poisson in 1829 and Stokes in 1845 [24]. Until
now, a complete theory on the solvability and stability, mainly in two and three space dimension,
has not yet be found despite being the focus of many researchers such as Solonnikov, P.LL Lions,
E. Feireisl, Matsumura, Nishida, etc.

In one dimensional space, the qualitative properties of this system are better understood. For
instance, when the viscosity is constant, existence and uniqueness of classical solution associated to
the Navier Stokes system with regular initial data was obtained in the 60’s thanks to the works of
Kanel [15], Kazhikhov [16] and the Russian school [1]. Likewise, in [10, 11, 11], David Hoff proved
the existence of global weak solutions with initial density admitting shocks (discontinuities), we
refer also to the works of Serre [23, 22]. When the viscosity is not constant, existence and uniqueness
of classical solution for the Cauchy problem associated to the Navier Stokes with regular initial
data was obtained by Mellet and Vasseur [19], Haspot [9], Constantin and al [6] and Burtea, Haspot
[1], whereas weak solutions with discontinuous density are recently obtained by Burtea, Haspot [7].
In their recent work [2|, Bresch, Perrin and Zatorska justified mathematically the derivation of the
viscous free/congested zones two-phase model from the Navier Stokes system for a compressible
isentropic fluid with a singular pressure. In order to handle it, the authors study the Navier Stokes
system in one space dimension with singular pressure and with initial data belonging to H'(0, 1),
in particular continuous. Motivated by this work, we want to know if regularity on the initial data
can be reduced. Our goal is to seek if it is possible to obtain a weak solution of the Navier Stokes
system assuming a Lebesgue conditions on initial date. In particular, the initial density may be
discontinuous. The remainder of this document is structured as follows:

e in the first chapter we begin by recalling the physical principles being behind the Navier
Stokes system for compressible fluid at constant temperature for the one dimensional prob-
lem. In a second time, we will introduce the mass-Lagrangian formulation.

e In the second one, we study the local theory for regular initial data of the Navier Stokes
system with singular pressure. In fact, having proved the existence and uniqueness of local
strong solution, we deal with the long time existence of the local solution.

Singular pressures in the mechanics of compressible fluids 2



Chapter 1. Introduction

e In the third chapter, one proves the global well-posedness of classical solution of the Navier
Stokes system with a particular singular pressure law. One supposes that the initial density
is away from zero and the singularity point of the pressure.

e In the last chapter, we construct a weak solution of the Navier Stokes system with singular
pressure by assuming that the initial energy is small and the initial density is far from vacuum
and the singularity point of the pressure. The classical energy estimate leads to the fact that
the weak velocity u is just L2 (RT, H'(T")) which does not allow us to define formally the
flow associated to the velocity u. Using techniques introduced by Hoff in |11, 12], we recover
that d,u € Ll (R, L>(T')). That is sufficient to justify the global well-posedness of the
flow associated to the velocity u and helps to understand more the transport equation in the

case of discontinuous initial density.

Singular pressures in the mechanics of compressible fluids



CHAPTER 2

PRESENTATION OF THE MODEL

In this chapter, we first establish the Navier Stokes system from the point of view of physics. In
a second time, we will discuss the mass-Lagrangian change of variable, which is a feature of the
Navier Stokes system in one space dimensional.

2.1 Navier Stokes system

The motion of a fluid at constant temperature is described by a system of two evolutionary equa-
tions called the Navier Stokes system : the first equation is called the mass conservation equation.
It comes from the fact that in any evolving volume, the mass is conserved : the fluid is advected.
The second one, called momentum equation is a simple application of the Newton’s second law.
In what follows we recall the physical considerations that lead to the two equations.

We consider a fluid of density p and velocity u in motion with a constant temperature and we
introduce the flow of u :

Xi(x) =2 —i—/o u(s, Xs(x)ds.

Let V' be a fluid element driven by the flow &;. Mass of fluid in X;(V) is :

m(X(V)) = /X e

As V is advected with the velocity u, the quantity of mass of fluid contained in the material volume
X: (V) being constant over time, one has :

d
Sm(x,(V)) = 0.

Then applying the Liouville transport equation Theorem A.1.1, one has :
d

D) = /X ) B () () =0

This relation being true for any element of volume V' then, one obtains the mass conservation
equation

Op + div (pu) = 0. (2.1)

Singular pressures in the mechanics of compressible fluids 4



2.1. Navier Stokes system Chapter 2. Presentation of the model

Now, we apply Newton’s second law which reads as follows : the rate of change of the total
momentum of an element of fluid occupying a domain X;(V') at each time is equal to force acting
on X(V). To apply this law, one must take into account of all the forces acting on X;(V'). There
are of two types : stress forces and external or body forces. As the name suggests, contact forces
characterise the contact interaction between material elements. They depend on the rheology of
the fluid. If o is the stress tensor, 7i the unit normal vector field on 0X;(V') and ds the surface
element of 0X;(V'), contact forces acting on A;(V') is given by :

[ e st = [ oo

(V)

Exterior forces are those acted by external system. They can be gravity, friction, etc. If f is the
density of external forces, then external forces acting on X;(V') is given by :

/ f(t,x)dz.
X (V)

Noting that quantity of momentum in a volume &;(V') of fluid is

/ p(t, z)u(t, z)dx
X (V)

and applying Newton’s second law and performing the transport theorem of Liouville Corol-
lary A.1.1, one obtains :

div (o)(t, z)dx + / f(t,z)d.

X (V)

Oi(pu) + div (pu @ u)) (t, z)dx =
/W< (pu) + div (pu ® u)) (£, 2) /

X (V)

As this is true for any V' then, one obtains the second equation of Navier Stokes system referred
as momentum equation :

Or(pu) + div (pu @ u) = div (o) + f. (2.2)

Gathering (2.1) and (2.2), one concludes that the motion of a compressible fluid with constant
temperature is described by the Navier Stokes system :

Orp + div (pu) = 0,
O¢(pu) + div (pu @ u) = div (o) + f.

When the temperature is not constant, one has an additional equation for the temperature or
the energy, to describe fully the motion of the fluid.
A fluid is said to be Newtonian if its stress tensor is:

o= —ply+ Mdiv (u)l; + 2uDu

where p is the pressure of the fluid, A and p are called Lamé coefficients and where

Du = = (Vu+'Vu)

DN | —
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2.2. Change of variables Chapter 2. Presentation of the model

is the deformation tensor. In general, A and p are functions depending on the density and we say
that the fluid is barotropic. If they are constant for a fluid, we say that such fluid is isentropic. We
conclude that for Newtonian, barotropic, isothermal fluid, the Navier Stokes system is written :

{@p +div (pu) =0, (2.3)

O(pu) + div (pu @ u) + VP = V (Adiv(u)) + pAu + f.

The pressure is a thermodynamic variable that models the interaction between fluid particles.
Particular examples are the following :

1. perfect Gas pressure law : For perfect gas, the pressure is the form P(p) = ap;

2. adiabatic pressure law : P(p) = ap” with v > 1;

ap

3. Van-der-Walls pressure law : P(p) = T %
— bp

+ cp?.

2.2 Change of variables

In this section, we exploit the structure of the one dimensional Navier Stokes system to obtain
it in new variable, see more details in [I]. We consider the Navier Stokes system for Newto-
nian isothermal and barotropic fluid on the one dimensional torus T!, so with periodic boundary
conditions :

(2.4)

Op + O0x(pu) =0,
O(pu) + 0 (pu @ u) + 0, P = 0, (uoyu).

Let pg be the initial density satisfying inf1 po(x) = ag > 0. Let us consider the mapping =
zeT

1 x
i po(s)ds with M = po(z)dx. This map is one-to-one on T! to itself and its inverse
0 T!
denoted Y satisfies
1 M

(Y=L (Y(m)  po(Y (m))
Suppose that the velocity u € LL (R*, H*(T!)), one can define the flow X (-, z) : Rt — T!

loc

Y'(m) =

dX
E(t,x) =u(t, X(t,x)),
X(0,z) = x.

X is given by the Duhamel formula

X(t,x) ==z —i—/o u(s, X (s, z)ds.

Notation. The mass Lagrangian change of variable is J: (t,m) — (t, X (t,Y (m)). For any func-
tion g: (t,z) — g(t,z), we denote g the function defined by :

§(t> m) = g(t7 X(t7 Y(m))

6 Singular pressures in the mechanics of compressible fluids



2.2. Change of variables Chapter 2. Presentation of the model

Proposition 2.2.1. For any function g, one has :

(0,,5(t,m) = W%—f(w(m))%@,m),

0t m) = 2 (t,m) + (¢, m)Bag(t, m),

ox /\ft 0X

(am = polv (m)) o Y ()

Remark 2.2.1. The new coordinate m 1is referred as mass-Lagrangian coordinate whereas x is
called Eulerian coordinate. We will write (2.4) into this new coordinate. We begin by the mass
equation (2.4),.

Using the previous proposition, one has :
up(t, m) = Oyp(t, m) + T(t, m)Dyp(t, m)

but by (2.4),,

—_—~—

—gp(t, m) = ar(pu) = ﬂ(t, m)(é:;(t, m) + ﬁ(t> m)aﬂfu(tv TTL)

then

4plt, m) = 7t m)zult, m). 25)
Furthermore,

% (e xtan G 00) =
SO

1 oX o
3 ) (G vm)) = pitm)
and using the previous proposition to express 5Ivu(t, m) in (2.5), one has
op = —p O (2.6)

Moreover, using the third identity of the previous proposition, one notes that

ox 1
P S (2.7)

So, in mass-Lagrangian coordinate (2.4), is equivalent to the equation (2.6). We turn now to the
momentum equation in mass-Lagrangian coordinate.
Testing (2.4), with a smooth function ¢ € €,((0, +00) x T*), one has :

/0 /11‘1 [pudp + (pu® + P(p) — p(p)Oyu) 0,20] didx = 0.

For ¢ € D((0,T) x T'), one can use 1) = @ o J~! as test function in the above formulation. By
doing like that, and next performing the change of variable J, one obtains :

/OT /T 01 [at<$3)/<—1> + ﬁ(t,m)ax(m—l)} + [P(ﬁ) - u(ﬁ)@ﬁ] 9y(7 0 X-1) x ﬁ(t,lm) i — 0.

7 Singular pressures in the mechanics of compressible fluids



2.2. Change of variables Chapter 2. Presentation of the model

Next, using Proposition 2.2.1, one obtains :

T
/ / (04 + Oy (P(3) — 1(7)p00@)] idtdm = 0,0 € D((0,T) x T*)
0 Jm
then, the momentum equation in mass-Lagrangian coordinate is :

By + Oy [P(F) — 11(7)pOhmil] = 0. (2.8)

Gathering (2.6) and (2.8), one notes that the Navier Stokes system in mass-Lagrangian coor-
dinate is :

S0 o
{&:p + p*Onu = 0, (2.9)

By + Oy (P(P) — 1(P)pOmi) = 0.

1 ~
Thus setting 7(t,m) = = called specific volume and v(t,m) = u(t,m) we have :

p(t,m)

{(27’ — Opv =0,
O + 0, (P(1)7) — pu(1/7)7710,v) = 0.

Remark 2.2.2. This change of variable is only available in one dimension. In higher dimension,
one is satisfied just with the change in Lagrangian coordinate X, for more details, refer to [7].

8 Singular pressures in the mechanics of compressible fluids



CHAPTER 3

LOCAL THEORY FOR REGULAR INITTAL DATA

In this chapter we develop a local theory of the Navier Stokes system with singular pressure. It is
divided into four sections. In the first one, we use a fixed point argument to prove the existence of
local solution of the Navier Stokes system in mass-Lagrangian coordinate, and due to the regularity
of the flow, we deduce the existence of classical solution of the system in Eulerian coordinate. In
the second, we prove the uniqueness of the local solution by proving a < continuity > of the
solution with respect to initial data. In the last section, we prove a blow-up criteria similar to the
one in [1]| that to say L*-norm of the density and its inverse control the higher Sobolev norms of
solutions provided that it is away from the singularity of the pressure.

3.1 Existence of strong solution

We consider the Navier Stokes system :

{at,o + 0. (pu) =0,

Oi(pu) + O0x(pu® + P(p) — pu(p)Oyu) = 0. (3:1)

Above, the viscosity p € €3([0,+00)) is a positive function of p and the pressure P: [0, ppaz) —
R* € €3([0, pmaz)), increasing function of p satisfies :

lim P(s) = +o0. (3.2)

S—Pmax

The main result of this section is summarised in the following theorem.

Theorem 3.1.1. Assume that (pg,uo) € H*(T') x H*(T"), the viscosity p, the pressure P are like
above and that there exists ag > 0 such that

%) < Lo < Pmaz — Q0-
Then, there exists T' > 0, a classical solution
(p.) € €([0,T), HA(T")) x (4([0, T}, HA(T") N L*((0,T), HY(T")))

of the Cauchy problem associated to the Navier Stokes system (3.1) with initial data (po,uo).

Singular pressures in the mechanics of compressible fluids 9



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Moreover, there exist two constants n > 0 and C' > 0 depending on T, a and on the initial data
such that :

n < 1Y < Pmaz — 1),
T
sup {[|p(t) | 3r2emy + I1u(®)|[Fr20r) } +/ |OvulFra ey} < C.
ost<T 0

In order to prove Theorem 3.1.1, we will work in mass-Lagrangian coordinate : first, we solve (3.3)
with a fixed point argument and next we pass to the Eulerian coordinate. Let us note that, for
a priori estimates, it is easier to manipulate the Navier Stokes system in mass-Lagrangian rather
than in Fulerian coordinate. For instance, this change of variable makes the mass conservation
equation very easy to solve. To be convinced, we refer to [20|, where John Nash showed the
existence of classical solution with Holder regularity for the Navier Stokes system while working
in Eulerian coordinates. We also refer to [7] where, R. Danchin proved existence of solution with
Besov regularity for the Navier Stokes system while working in Lagrangian coordinates.
We complete the above existence theorem by an extension one, which is stated as follows :

Theorem 3.1.2. Assume that (py,ug) € H?(T') x H?(TY), the viscosity u(p) = p°, § > 0, the
pressure P is like in (3.2) and that there exists ag > 0 such that

Qo < £0 < Pmaz — Q0-

Let (p,u) € (€([0,T], H2(TY)) a local solution of the Cauchy problem associated to (3.1) and
initial data (po,uo). If we further assume that there exists C' = C(T') > 0 such that

VO<t<T7 C(T)gpgpmaz_C(T)
then the classical solution (p,u) can be extended beyond T

The proof of this theorem is done in section 3.3 of this chapter. It is a direct consequence of the
blow-up criterion of Navier Stokes system in mass-Lagrangian coordinate Theorem 3.3.2.
In consequence, one obtains the following blow-up criterion.

Theorem 3.1.3. Assume that (py,ug) € H?(T') x H?(TY), the viscosity u(p) = p°, 8 > 0, the
pressure P is like in (3.2) and that there exists oy > 0 such that
Qo < £o < Pmaz — Q0.

Let (p,u) a local solution of the Cauchy problem associated to (3.1) and initial data (po,uo). Let
T* be the maximal existence time of the solution. If we further assume that

0< inf p< sup p< P
[0,7*)xT? [0,7%)x T

then T* = +o0.

This theorem can be easily deduced from Theorem 3.1.2 by absurd so, for the sake of brevity it
will not be proved.
As we know, in mass-Lagrangian coordinate (3.1) is

{@7’ — Opv =0,

o + Oy, (]3(7') — ﬁ(ﬂ@mv> —0. (3.3)

10 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Above, functions P and it are defined by :

P(r)=P(1/7) and J(r) =7 'u(l/7).

Notation. The linearized problem associated to (3.3) is :

O — O (VOmv) = F,
v(0) = vy

with some functions V and F.

In the following subsection we study the linearized problem associated to (3.3) in order to set up
tools for fixed point theorem in the second subsection.

3.1.1 Study of the linearized problem

Let us consider the linear non-homogeneous parabolic equation
0w — O (VO,v) = F (3.4)
with V' and F' two given functions, periodic in space, satisfying :

V(0) € L®(TY), 9,V € Li (RT, L=(T")),

loc

OV € Li (R, L2(TY)), infV =V >0, (3.5)

loc

F e L2 (R, L*(T")).

loc

We aim to prove that the Cauchy problem associated to (3.4) with initial data vy € H?(T') has
a unique solution with the same regularity as in Theorem 3.1.1, that is to say € (R™, H*(T')) N
L} (R, H3(T')). We begin by the following existence and uniqueness theorem :

loc

Theorem 3.1.4. Assume vy € H(T') and V, F satisfy (3.5). Then, there exists a unique v €
€ (R, HY(TY))NL: (R, H*(TY)) such that dyv € L3 (R, L*(T1)), solution of the Cauchy problem

loc loc

{atv — O (V) = F, (3.6)

v(0) = vp.
Moreover, for all T > 0 there is a constant C = C(T,V') > 0 such that :
HUH‘QK([O,T],Hl(Tl)) + “atUH%Q((O,T)X’]I‘l) + l/HamUH%Q((O,T),Hl(Tl))
< C (ol + I1F s oy ) - (37)

The constant C' is given by

C = Cyexp (T + ClHamVHZJé‘l((O,T),L?(Tl))) +max (1, [V(0)]| oe(rr)) exp (10:V ||t (o.0).Lo0 1))
(3.9)

where C depends only on V.

11 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

It turns out that if we have more information on V', F' and the initial data vy, the solution will be
more regular. This result is stated in the following.

Theorem 3.1.5. Assume that functions V and F satisfy (3.5) and also

OV € L2 (RT,L=®(T)),  OmmV € LiS(RT, L*(TY)).

loc loc

If v € H*(TY) and F € L3 (R*, H'(T')) then there exists a unique v € € (RT, H*(T')) N

loc
Li (RT, H3(T"Y)) such that O € L2 (RT, HY(T')), solution of the Cauchy problem associated

loc

to (3.6) and vy. Moreover for all T > 0, there exists C' = C(T,V) > 0 such that :

||UH<25([0,T],H2(T1)) + “atUH%Q((O,T),Hl(’JTl)) + l/HamU”%Q((O,T)xHQ('JTl))

<O <||UO||%{2('J1‘1) + ||F||2L2((0,T),H1(1r1))> . (3.9)

We will prove Theorem 3.1.4, with a homotopy argument, we define, for 7" > 0, two sets X, Y
and function Vj by :

X ={ve%(0,T), H(T")) N L*((0,T), H*(T")): 0w € L*((0,T) x T")},
Y = L*(0,T) x (TY)) x HY(T') and Vy=(1-0)V+60V 6<€]0,1]
and consider the map :

M: X =Y (3.10)
v = (O — O (VgOmv); v(0)) .

We will show that the set
& ={0 €[0,1] : 11 is one-to-one} (3.11)
is at the same time open, closed and nonempty set of [0, 1], thus 1 € &.

Proof of Theorem 3.1.4. Let us begin the proof of Theorem 3.1.4 by a uniqueness property for
equation (3.4).

Theorem 3.1.6. Assume that F € L*((0,T), H *(T")), vo € L*(T") and V satisfying (3.5). Then
there exists, in

X = {v € €([0,T], L*(TY) N L2((0, T), HY(TY)): dv € L2((0,T), H~'(T1))}

at most one solution of the Cauchy problem

O — O, (VOv) = F,
0 = O (Vo) (3.12)
v(0) = vp.
Proof. Let v; and vy be two solutions of the above equation in X. Obviously, w = vy — vy is

solution of the homogeneous equation

Oyw — O, (VOw) =0,
v(0) = 0.

12 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

As 0,V € LY((0,T), L>=(T")) then V € €([0,T], L>(T")) and so 9,,(Vd,,v) € L*((0,T), H*(T")).
We are able to multiply the first line of the above equation by v, and obtain after integrating on

Tl
2 2 _
th/ |w] +V/ |Omw]” = 0.

Next, integrating the above equation on time, one obtains :

T
Jwll ooy +Y [ [ 10wl =0
0 T!

This achieves the proof. n

Next we state an a priori estimates :

Lemma 3.1.1. Suppose that vg € H'(T') and v € €([0,T], H(T")) N L*((0,T), H*(T")) and
Ow € L?((0,T) x TY) satisfy (3.6). Then there exists a constant C = C(T,V) > 0 such that v
satisfies the estimate (3.7).

Proof. Multiplying (3.6) by v, integrating over T' with respect to m, one obtains

1d

1 1
th”U( W2y + VIOmv () 122y < §||F(t)||%2((1r1)) + §||U(t)“%2((1r1))' (3.13)

Next, multiplying (3.6) by Onmv integrating over T! with respect to m, one obtains after some
integration by part,

1d
——||8mv]|%2(1r1)+/ V|8mmv]2:/ F@mmv—/ O 000, V. (3.14)
Zdt T T Tl

By Holder inequality, one obtains :

/ (9mmv(9mvamV‘ < Hamm’UHL2(T1) ||amUHL°°(T1) ||(9mVHL2(T1)
Tl
and by Gagliardo-Niremberg inequality

1m0 Zoe 1) < 21O v | 2ce) |Om |2y,

then

/'JI‘1 ammvamva V‘ \/_Hammv||3/21r1 Ham ||1/2’JI‘1 Ha VHLQ T')-

Using Young inequality for real numbers, for € > 0, there is C. > 0 such that

[ duvind v\ 0 ey + CollOmV L 10wl 2o, (3.15)
’]I‘l

As well, by Holder inequality, one has :

1
/Tl amva' < Bt e 1l 2y < ellmmvlFacy + I F 2o (3.16)

13 Singular pressures in the mechanics of compressible fluids



3.1. Existence of strong solution Chapter 3. Local theory for regular initial data

Gathering (3.14), (3.15) and (3.16), one has :

1d

thHamUHLZ () + (¥ = 2¢) / [Ommvl* < _HFHL2 @) + CellOmV 2@ 10mvllLamy.  (3.17)

Next, summing (3.13) and (3.17), one obtains :

1d o
5 POl + (V¥ = 26) 90 ()l o) < (E N i) PO

1
- (COV e + 3 ) B e,

\Y
Then, choosing € = ?, there is a constant '} depending only on V such that

d
Moy + V0051 r1y < CIF @172 + (Cl\|8mVHi2(Tl) + 1) (@) () (3.18)

Applying the Gronwall’s lemma to (3.18), one obtains :

lo]|% @ ([0,7),HY(TY)) T VHamUHL? (0,7), HN(T)) S <Cl||F||%2((O,T)><’]I‘1) + ||,UU||?{1(’]I‘1)>

X exp (T + ClHamv”i‘l((O,T),L%Tl)))' (319)

It remains the estimation of d;v. Multiplying (3.6) by 0,v and integrating in space, one obtains :

1d
/\atv|2 / @mv‘/@mv—/ OopwF — HGtUHLz(Tl)—i—th/ V00,v|?

1
atUF+—/ ]&UF&V
2 T

Tl

then

1d 1 1
[ VI00? < SIP By + 5100l |0V oy (320)

2
§||atv||L2(T1) + 24t J-

Applying again Gronwall’s lemma to (3.20), one obtains :

HatUH%Q((O,T)X(']Tl)) + MH@mUH%’([O,T],L%TI) < <||F||%2((0,T)><11‘1) + ||V(O)HL°°(T1)Ham'UOH%Q(rﬂq))
x exp ([|0:V || L1 o.r),L(11y) - (3:21)

Finally, gathering (3.19) and (3.21), one has the result. O

Remark 3.1.1. [t is easy to prove that Iy given by (3.10) is well defined, linear and continuous.
Let us prove that & defined in (3.11) satisfies & = [0, 1].

Lemma 3.1.2. & =0, 1].
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Proof. Let us consider the linear non-homogeneous heat equation

{@v Vo0 =F, 5.22)

v(0) = vy.

For F € L?((0,T) x T') and vy € H?(T") there is an unique solution in X of (3.22) and the map
(F,v0) € Y — v € X is continuous. Therefore & is not empty.
Suppose that 0y € &, and let us observe that for any 6 € [0, 1] :

Ty = Ty, + (6 — 6y) (T, — Thy) = Ty, (T + (6 — 60)TT, (T, — TIy)) . (3.23)

Thus, for |0 — 6y| < ||H9_01(H1 — IIy)|l.#(x), one obtains 6 € &. Consequently, & is an open set of
[0,1].
Let (0,,), be a sequence of & that converges to 6 € [0, 1]. As (3.23), one has :

Iy = My, [1 + (0 — 0,)I1, (1T, — IT)] . (3.24)

From the a priori estimates Lemma 3.1.1 and more precisely (3.8), one deduces that ||II; || #(v.x)
depends only on ||Vp, (0) | e rtys [|0:Va, |21 0,/1), L0 (1ty) @and ||0m Ve, || 4 (0,7), 2¢r1)) Which are bounded
uniformly in n, thus

K = sup||I; || v,x) < 0.

Let us choose ng such that
16 — O | K| TTo — I [ 2(v.x) < 1,
and replace n by ng in (3.24), one obtains that 6 € &, thus & is a closed set of [0, 1].
In short, & is, at the same time closed, open and non-empty set of [0, 1], so & = [0, 1]. O]
Obviously, Theorem 3.1.4 is a consequence of the fact that 1 € &. O

Proof of Theorem 3.1.5. Assumptions on F' and vy, ensure, thanks to Theorem 3.1.4, the existence
of a unique solution of (3.6) satisfying (3.7). By differentiating (3.6) with respect to m, we see
that 0,,v satisfies the following Cauchy problem

— = F — - = ﬁ

(9mv(0) = 8mv0.

Assumptions on F and regularity on v given by Theorem 3.1.4, that is to say v € €([0, T], H'(T*))N
L*((0,T), H*(T')), ensure that F € L*((0,T) x T'). Applying again Theorem 3.1.4, we conclude,
by uniqueness Theorem 3.1.6, that 9,,v € €([0,T], H'(T')) N L*((0,T), H*(T')) and satisfies

||amvH<25([0,T]7H1(']1‘1)) + ”afamUH%Q((O,T)XTl) + yHammU||%2((0,T),H1(11‘1))
< C1 (J0mvollrsy + I Fl3agoyers)

where (] is given by (3.8). By Holder inequality, one has :

| F |l 2o,myxmy < ||0m || 220,10y x11) + | Omin V|| oo ((0,7), 2201 )) | OmV || L2 (0,17), o0 (1)
+ 10V || Lo 0,1y ) [ Omm ¥ || L2 (0, 1) <11y -+ (3:26)
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By Sobolev embedding H'(T!) < L>(T!), there is a constant C' > 0 such that :

10|l L2((0,7),L2¢ (1)) < CllOmv]| L2((0,1), 11 (11)-

Knowing that v satisfies (3.7), one obtains that the two last terms of the right hand side of(3.26)
is less than

OV max ([|0mV |z o2y xm)s 10mmV | L=(01).22¢1) (1ol m2cry + I1F 2o,y ) -

This helps us to obtain the estimation (3.9), with a constant C' depending on 7" and all condition
onV. ]

3.1.2 Setting tools for the fixed point theorem

In this section we set tools in order to use the fixed point theorem. The transport equation in
mass-Lagrangian coordinate, is easily solved by a simple time integration. Indeed function 7 given

by

t
7(t) =19 +/ Omv(s)ds (3.27)
0
is the unique solution of the Cauchy problem
O — Opv = 0, (3.28)
7(0) = 7p. '

If ve L'(0,7), H3(T")) and 7y € H*(T") then 7 € €([0,T], H*(T")).
Remark 3.1.2. From the expression of T, one deduces easily the following bounds :
(Pmaz = @0) ™" = [10mv]l 101y Loy < T(t,m) < gt + (|00 L1 (0.1, Low (1)),
Il oy, m2cry < llollmern) + vl om),meer)-

Using the Theorem 3.1.5, one obtains the following :

Proposition 3.1.1. Assume that 7 € €([0,T], H*(T")), 0,7 € €([0,T], H'(T")), vo € H*(T")
and that there exists a constant 3 > 0 such that

0 < (Pmaa — B)" < 7(t,m) < 7" (3.29)

Then the linear non homogeneous problem

{atv — O (Ji(7)Dv) = =0 P(7), (3.30)

v(0) = vy

admits a unique solution v € € ([0, T, H*(T")) N L*((0,T), H*(T")) which satisfies (3.7).
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The proof of this proposition boils down to proving that i(7) and 8mﬁ(7') satisfy hypothesis on
V and F respectively in the Theorem 3.1.5. We skip it for the sake of brevity.
Next we consider the vector space Er = ([0, T], H*(T")) N L*((0,T), H*(T')) endowed with

the norm ||| defined by :

[ol|7 := [lv <26’([0,T],H2(11‘1)) + HamvH%Q((O,T),H2(’]1‘1))'

Obviously, (Er, ||-||z) is a Banach space, and consequently, any closed ball of Er is complete. For
all R > 0 we denote by Er(R) the closed ball of radius R of Ep. Given v € Ep(R), we consider
7y (3.27) the unique solution of (3.28). Bounding ||0mv||L1((0),o(r1y) in the first inequality of
Remark 3.1.2 with the Cauchy Schwartz inequality in time, one obtains that there exist T} > 0
and a constant n = n(7Ty, R) > 0 such that, for all 0 <t < T3,
0< (pmax - 77)_1 < T(tam) g 77_1‘

Then, adding Proposition 3.1.1 , one obtains that for any v € E7, (R) there is a unique solution w
of the Cauchy problem (3.30), with 7 given by (3.27). In the following Proposition, we show that
if T is small, then w € Ep(R).

Proposition 3.1.2. There are R* > 0 depending on the initial data and Ty < T1 tnversely pro-
portional to R* such that ||w| g, < R*.

Remark 3.1.3. Adding Proposition 3.1.2 to our previous analysis, one concludes the fact that the
map

(I)T2: ETQ(R*) — ET2<R*)
V= w

where w the unique solution of (3.30) with T given by (3.27), is well defined.

It remains to show that ®; is a contraction for some small enough 7" < T5. This result is stated
in the following.

Proposition 3.1.3. There ezists T* small and 0 < k < 1 such that for any v,w € Ep+(R*) we
have

|7+ (v) = D7+ (W) e < Kllv = w]E.

Using the fixed point theorem, we conclude that there exists a unique v, € Ep«(R) such that
Ors (v,) = v,. Such v, and 7, given by

¢
T(t) = 79 —I—/ Omvs(8)ds,
0

satisfy the Navier Stokes system (3.3) in classical sense.
Proof of Proposition 3.1.2. Let us set V = Ji(r) and F = —9,,P(7) and rewrite the estimation for

w.

||wH2<£([O,T],H2(’]1‘1)) + ||3t||2L2((0,T),H1(1r1)) + yHamw”%?((O,T)XHQ(Tl))

<O <||UO||§12(T1) + ||F||2L2((0,T),H1(1r1))> (331
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with V depending on 7. As shown before, the constant C'is given by
C = 01 (1 + yil max (HamVHLOO((O,T)x(’]I‘l)); ||6mmV||Loo((07T)7L2(T1)))) (332)

where (] is given by (3.8). Remembering that v € Er(R), and assuming that 7" < T} one has the
following estimates:

IV (0| ooy = e1(@); 10V |1 oy poeqrty < ca()RT;
10wV | L0.).22¢ry) < ea(MTY* (|00l 2oy + RT) ;
HamV“LOO((O,T)X('I[‘l)) < 04(7]> (||am7'0||L2((T1)) -+ RT) ;
10mnV [l =07y, 22(r1)) < €5(1) (10mm ol z2cery + RTY2)

1
|Fll a0y < e T3 (Inollerny + RV (2 + ol ey + RVT).

Let us remark that n is supposed to be fixed, thus constants ¢; do not depend on T neither R.
Thus, choosing a large R depending on norm of the initial data and a small 7" less than a constant
times the inverse of some power of R, one can make the right hand side of (3.31) less than R,
which completes the proof. O]

Proof of Proposition 3.1.3. Let v,w € Ep«(R*), w = ®p«(u), v = &p«(v) and

t t
Tu(t) = 7o —i—/ Omu(s)ds, T,(t) =19 +/ Omv(s)ds.
0 0
As @, v satisfy (3.30) with 7, and 7, respectively, one has

O (W —70) — O (1(74) O (W —0)) = —F,
{w—vmnzo 33
with F' given by

F= ﬁ/(Tu>amTu - P/(Tv)ang_?m {(a(7e) — p(7)) O} .

. s

v

P By
Noting that F) can be written in the form
Fy = P'(1,) (07 = 0um) + (P/(1) = P'(7,)) Do

one easily obtains

1F 2.y sy < ex(m) T [0mm (u = 0) s ory 2y + (70 = Tllryy + RT)
H@m(u — U)H‘@o([O,T],LQ(’]I‘l))] g C7(77)T3/2 (1 + ”TOHHQ(Tl) + RT) Hu — UHET*' (334)

Putting 9,,F; in the form
O 1 = f)//(Tu)(amTu + OnTo) (OmTu — O Ty) + (]S/I(Tu) - ﬁ”(ﬂ;))

+ P ()0 (7 = 7) + (P'(7) = P'()) Do
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one shows that

10m Fill 20y my < es(m T2 |1 4 [|70]| r2(ry + Rﬁ] lu = v, (3.35)
We turn now to the estimation of F5. We rewrite F5 on the form

Fy = [i/(7) (On(7u = 7)) + (' (1) = 1H(70)) OmTo] Om® + (A7) = [1(70)) OV
And one finds easily
1F2 ]l r2(0my sty < co(m)RT2 (1 + |70l m2(ry + TR) [lu = vl 5. (3.36)
Despite the fact that 0,,F5 seems a little bit difficult to estimate, as before, we put it on the form
OnFy = [ (1u) OmTu + OnTo) (O Ty — Ommy) + (W' () — H'(7)) | O |

+ﬁ/(7_u) (ammTu - ammTv) + (/7/(7'%) - ﬁ/(Tv)) 8mm7—v] Om¥
+ [/jl(Tu> (amTu - amTv) + (ﬁ/(Tu) - /N/(Tv)) amTv] Omm¥ + Ommm? (ﬁ(Tu) - ﬁ(Tv» .

And one obtains,

10w Fall 20y wmy < c1o(m)TR |1+ R+ VT (HTOHHQ(TI) + Rﬁ)
(1 + R+ ||roll ey + R\/Tﬂ lu—||g,.. (3.37)

As w — v is solution of (3.33), then thanks to Theorem 3.1.5, it satisfies (3.9), with vg = 0, a
constant C' given by (3.32). Adding estimations (3.34), (3.35), (3.36) and (3.37) and choosing a
small 7™ inversely proportional to a power of R, one obtains that &7« is a contracting map. This
ends the proof. n

3.1.3 Back to Fulerian coordinate

Above, we proved that given (pg,ug) € H?*(T) x H?(T'), there exists a classical solution (7,,v,)
of the Cauchy problem associated to (3.3) with initial data (79,v9) defined by :

To(m) = 1/po(Y(m)) and vy = uo(Y (m)).

As we showed in section 2.2, it is obvious that (p., u.) defined by :

1

w(t,2) = w(tm(t,2)) and pulta) = o

is solution of the Navier Stokes system (3.1)in Eulerian coordinate. In the following we prove that
(ps, uy) is as regular as (7., vy).

Let us note that the jacobian of the change of variable J: (¢,z) — (¢,m(t,x)) is 1/7.. Then,
as 7, is far from zero, J € €([0,T], H2(T")) and consequently (p.,v,) € (€(]0,T], H*(T")))?. It

x
remains to prove that d,.,u. € L*((0,T) x T!). First, one uses the fact that = to obtain
m

2 2 2 3
Ozl = T OmT|“Om Vs + T2 Omm TuOm Vs + 3T O TuOrmum Vs + Ty Ormmam Vs

Then using the regularity on 7, v, and the fact that 7 is far from zero, one proves that 0., u, €
L*((0,T) x T'). And the result follows.
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3.2 Uniqueness of the local solution

In this section we prove that the solution that we constructed with a fixed point theorem is unique.

The statement is the following.

Theorem 3.2.1. Given (pg,uo) € H*(T') x H*(T'). Then for any T > 0 there is at most one

solution (p,u) € € ([0, T], H*(T"))x (€ ([0, T], H*(T")) N L*((0,T), H3(T"))) of the Cauchy problem
Op + Oz (pu) = 0,
O(pu) + Oz (pu? + P(p) — p(p)Osu) = 0, (3.38)
(p(0),u(0)) = (po, uo

such that there exists ¢ = ¢(T) >0 : ¢ < p(t, ) < pmaz — C-

Remark 3.2.1. Let (p,u) and (p',u’) be two solutions of the Navier Stokes system (3.1), and
let us define 6p = p — p' and du = u — u'. We can easily convince ourselves that the proof of
Theorem 3.2.1 comes from the following theorem :

Theorem 3.2.2. There ezist two positives constants C' = C(T,p, p',u,v',p) and v = v(c) such
that

T
sup / [p(t, 2)|6u(t, z)|* + |6p(t, z)|?] dz + 1// |0, 0u(t, v)|*dtdw
T! 0 T1

0<t<T
<c / [o(t, 2)|5u(0, 2)| + [5p(0, 2)|?] d. (3.39)
Tl
Proof of Theorem 3.2.2. Let us note that dp and du satisfy :
0:0p + O, (udp) + 0, (p'éu) = 0,
: u+u L
PO + 0pouu’ + pd, | du 5 + 00, 5 + P'(p)0.0p (3.40)

+ (P'(p) = P'(p') Oup’ = 00 (1(p)0abu) — O ((1(p) — p(p"))Oxt’) = 0.
Now, multiply the first equation of (3.40) by dp, one obtains, for £ > 0,

1d
2 dt

1
10PN Z2crry < SN0 Z2r) 1050 () | 0w (1) + 2€ /1000t 72rr)

1
+ ¢ [HCsU(t)Hi2(1r1)|\azpl||%2(1rl) + ||5P”%2(1r1)||3x:0/”L2(T1)} + 4—5||5P(t)\|%2(1r1)HPIHQLOO(W)- (3.41)

Next multiply the second equation of (3.40) by du, one obtains that there exists a constant C
depending only on ¢ and ¢ such that

1d
24t o plou(t))® + /Tl (1 (p) — 2¢) ||00ut)||> < Cy (H(SU/H%Q('H‘l) + H(S/)H%gm))

(L 4+ 110pl owrry + 1060/ ooy + 1902 (u + ') — (u+ 1) up|l oo (rr) + (|01 [| oo )
H|0epllpoo(rry + 11820l oo (r1) + 11000/ Loy ) - (3.42)
Summing (3.41) and (3.42), one easily apply Gronwall lemma and obtains (3.39). Terms in the
obtained inequality after applying Gronwall inequality coming from blue terms in (3.41) and
(3.42) are easily bounded by a constant depending on norms of T, p, p/, u and « maybe ex-

cept |0up|| L1 (0,200 (1)) and [|0pw|| L (0,1), L0 (11y). But by (3.38), one has dyp € €([0,T], H'(T"))
and because p' is far from vacuum, dyu’ € L*((0,T), H'(T")). This ends the proof. O
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3.3 Blow up criterion

In this section, we want to find a criterion for which the solution of the Cauchy problem associated
to the Navier Stokes system with initial data (pg, ug) € H*(T') x H*(T!) is globally defined. Let
us note that the time of existence of the local solution is proportional to the inverse of a power of
the norm of initial data, which explains the fact that the smaller the initial data, the greater the
time of existence. Throughout this section the viscosity take the form pu(p) = p’ with 6 > 0 and
the pressure P satisfies (3.2). In the following lines, we state an extension theorem for our system
which is similar to the classical one for ODEs.

Theorem 3.3.1. Let (1,v) € €([0,T], H*(T")) x (€([0,T], H*(T")) N L*((0,T), H*(T"))) be the
local solution of (3.3) with initial data (19,ve) € H?*(T') x H*(T'). Assume that there are two
positives constants C(T) and ¢(T) such that

VOt <T 7)) |l g2erys [u@)]| g2y < C and  (prmas — o) '<r(t) < el
Then the solution can be extended beyond T'.

The proof of this theorem is based on the fact that one can construct one solution of the same
system starting very closely to T
From this theorem, one has the following blow-up criterion :

Remark 3.3.1. Let T* be the mazimal existence time of the local solution (1,v) of the Navier
Stokes system (3.3) with initial data (19,v9) € H?(T') x H*(T'). Assume that there are two
non-negative constants C' > 0, ¢ > 0 such that

VOt <T* |7z, |[w)|mzay < C and  (ppae — )" < 7(t) < 7 (3.43)
Then T = +o00.

The new challenge is to show that the bound on the density controls the higher Sobolev norms
of the solution. Consequently, the previous explosion criterion could be simplified by taking into
account only the fact that the density is away from zero and p,,q.. The result is stated in the
following theorem :

Theorem 3.3.2. Let T* be the maximal existence time of the local solution (1,v) of the Navier
Stokes system (3.3) with initial data (19,v9) € H*(T') x H*(T'). Assume that

0< inf 7< sup 7 < Pmas 3.44
(0,7)xT* [0,7%)x T? P ( )

Then T* = +00.

To obtain the above theorem we will prove Remark 3.3.1 : we only need to estimate the higher
Sobolev norms of 7 and v. We first obtain 9,,v € L*((0,T), L>(T")), which allows us to close
estimates for 7 and v. The proof of the blow-up criterion in Fulerian coordinate Theorem 3.1.3
follows. Indeed, p bounded in Fulerian coordinate is equivalent to p bounded in mass-Lagrangian
coordinate with the same bounds.
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Proof of Theorem 3.3.1. Let be tg = T —eC~! > (0 with e small and consider the Cauchy problem
associated to (3.3) with initial data (7 (o), v(¢o)). Then, according to the previous section, there
exists a unique solution valid on (tg, T*) with T* — ¢, greater than a constant times C~'. Then
the smallness of ¢ allows T* — T to be non negative otherwise like a constant times C~!. By
uniqueness, on [tg, T'] the new solution equals the first one. And by juxtaposing the two solutions,
one obtains a new one on [0, 7™]. O

Proof of Theorem 3.3.2. Multiplying the first equation of (3.3) by 7 the second one by v, summing
and integrating on T! and using a Gronwall lemma one has the following estimates :

Lemma 3.3.1. There exists Cy = C1(T, ¢, ||70|| 2(m), [|vol|z2(1)) such that

T
sup (et + O} + [ [ 1wt m)Fatdm < € (3.45)

o<t<T
In the following, we obtain 9,,v € L?((0,T), L°°(T")).

Lemma 3.3.2. There exists Cy = Co(T, ¢, ||pol|z2(1), ||vo| a1 (1)) such that

/ lu(t, m)|*dtdm + sup |Opmv(t, m)|*dm < C. (3.46)
T

ot<T JT1

Moreover, there exists Cy = C3(T, ¢, ||pol|z2(11), ||vo|| a1 (1)) such that

T
Ar@wwmwmwgaj

Proof. Let us multiply the momentum equation by d;,v and integrate on T*!. One obtains :
1 ~
O + & / 00000 = | GmuP ().
Tl 2 ’]I‘l Tl
First,

/ﬁl+93t|8mv|2:%/ ,51+9|5’mv|2 (1+9) ~2+0(8mv)3
T1 T

T

and
d /
awmm:—/awmm+/P@WmM?
Tl dt Tl Tl

Then gathering the three above equations, one has :

1d . d 1+6
/ Q]2 + & / o= L [ 0,0PG) +/ P02 — 28 [ 200,00,
2dt dt ']1'1 Tl 2 Tl

Integrating the above equation on (0,t) with respect to time, one has :

t 1 - 1 . - -
| [Joat <5 [ 7 10m@F =5 [ @ 0wl + [ 0u@P@Eo) - [ 2P
0 T T

//A’Z\amvﬁp'm HG/ (0, 0). (3.47)
’H‘l
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In order to apply Grénwall lemma one has to estimate precisely each term appearing in the
right hand side of the above equation. Note that the singularity of the pressure makes the task
complicated, especially in terms showing P(p) or P'(p), for instance when p becomes closer and
closer t0 pmae. This justifies the fact that the assumption of uniform bounds on the density (3.44)
is of paramount importance. It implies in particular that P(p) and P'(p) are L>=((0,T) x T') and
by Hélder inequality and Lemma 3.3.1, one has, for some € > 0 :

/. 0mv(t)P(ﬁ(t))‘ <c [ A0 OF + 1 [ 50 PGEO:  (348)

ﬂ|amv|2P'm‘ / IP@F ey | 74100 (3.19)
T

'I[‘l

T
The term / P27 (0,,v)? forces a L2((0,T), L>(T")) bound on d,,v. To prove this under the
o Jm

assumption (3.44), we will use the bound on p'*?9,,v — P(p) which is nothing other than the
effective flux in mass Lagrangian coordinates.

t
~2+0
| [
0o JT!

ool (70,0~ P(7)| +

ﬁlamv\QP@‘
’]1‘ 1

t
/||~1+eamU_P(ﬁ)||L°°(’]1‘1)/ )5|amvl2+/ Hﬁ—(’P(ﬁ)HLw(Tl)/ ﬁl+9|am?]|2
T1 0 T

_ 1 [t 2
/” 1+93mU—P(ﬁ)||2Loo(T1)+§/ [/ ﬁlaml)|2:|
0 T
4 / 157 PPl s=crr) / 70,0
0 Tt

By Gagliardo-Niremberg inequality, one has :

1700 — P(p)|3 < 201000 22y 170w — P(P)l| 2cxy < 100] 22y + 1500w — P(B) 2,

then
1 [t ¢
<3 ) Lloar+ [1P@I + / (17 ooy + 177 PR ey
0 0

/t ﬁ%—@(a v 3
0 T1
+||51-9||Loom>[ |amv|2H [ 7l 350
T1 T1

Gathering (3.47), (3.48), (3.49) and (3.50), one obtains :

t 1 . 1
[ [owr =3 [ 30wt <5 [ 500 pGun + [ 1P@I
0 JT! T! T

+ (1 +9)/0 {HPHGHLOO @y + 10 P(D) | ooy + |1P'(2)5" | poe

P e [ / |amv|2H [ 7ol
Tl
1 » ~
i / 19,02 — / Do P(70)]
2 Tl Tl
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3.3. Blow up criterion Chapter 3. Local theory for regular initial data

Then, applying the Gronwall lemma, the boundedness of the density and the estimates Lemma 3.3.1,
one has the following bound with a constant C' = C(c, T, Eq, ||0pvo|| L2(1)),

T
| [Jaek+ sw [ 70,000 <.
0 0<t<T JT1

This completes the first part of the lemma. The second one comes from the following :

T
[ 100wy <2 [ 10w~ PO+ [ NP

/ 100 = Pl e 900 L om + / 1P

/ ||atv||L2(Tl>+4(/ 10022 + | Po ||m1) / 1P(0) 2,0

Using Remark 3.3.1, one notes that the proof of Theorem 3.3.2 is achieved after proving the
following :
Lemma 3.3.3. Given (1,v) € €([0,T], H*(T")) x (¢([0,T], H*(T')) N L*((0,T), H3(T"))) solu-
tion of the Cauchy problem associated to the Navier Stokes system (3.3) with initial data (10,v9) €
H?*(T') x H*(T"). Then there exist constant C' = C (T, ¢, ||7o|| m2(r1y, [[vol| m2(r1)) and v = v(c) such
that

T
sup {[I7()l[3 () + 0@z} + V/O 10mv () |2yt < C. (3.51)

0<t<T

Proof. We know that in mass-Lagrangian coordinate, the Navier Stokes equation is written

O — Opv = 0, 359
v + O, <15(7) - ﬁ(f)amv) =0. (3.52)
Multiply (3.52), by 7, (3.52), by v, summing and integrating on the T, for £ > 0, one has :
d -
Z U @OZzey + 0@ 1720} + /Tl(M(T) — &)|0nv? < Cle, )T (t) |72 (m). (3.53)

Next, multiply (3.52); by OpmT, (3.52)y by Oy, summing and integrating on the T', one has :

d ~
a{H@mT(t)ll%z(m H|Omv ()72} + /Tl(“m = &)|Ommv]* < Cle, )|OnT ()| 72(m).  (3.54)

Taking two derivatives of (3.52), with respect to m and multiplying by 0,7 and integrating on
the torus, one obtains :
1d L
2dt

Taking two derivatives of (3.52), with respect to m, next multiplying by Op,»v and integrating
on the torus, one obtains :

1d
2 dt

1
amm'r(t)“%?(ﬂ‘l) < 5Hammmv(t)”%2(’£r1) + E”ammT(t)H%?(Tl)- (3.55)

||8mmv( )H%Q('H‘l) + /11‘1 ﬁ(7)|ammmv|2 = /]1‘1 ammmv [15"(7)|0m7|2 + ﬁ/(T)ammT

— " ()| OmT[* O — 1 (7) Dy TOmv — 2ﬁ’(r)8mrammv] . (3.56)
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3.3. Blow up criterion Chapter 3. Local theory for regular initial data

Now we have to estimate each terms appearing in the right hand side of (3.56). By Hoélder
inequality and Gagliardo-Niremberg one has successively,

< 8Hammrrzv”%?(’[rl) + Ci(e, C)||amTHi4(T1)

/ P"(7) O | O 7|
Tl
< 5HammmvH%Q('Jl‘l) + Ci(e, c)HammTHL?(Tl)HamTH%?('ﬂ‘l)

< elOmmml32zsy + C1(e,©) (1 0mml3aeny + 10m Il ) 3 (3:57)

< 5|]3mmmv||%2(w) + 03(8, c)||8mm7'|]%2(qr1); (358)

/ ﬁ’(T)@mmmvﬁmmT
Tl

< Ca(©)10mmmll 2@y 10mv ] 22(x2) 1O | Lo o)

/ 1" (T) OV | O T |2 O v
’]I‘l

g 204(C)Hammm’l}HLQ(T1)HamUHLQ(Tl)HammTHLQ(Tl)”amTHL2(T1)

C4(C)
< 5||8mmmv||%2(1rl) + 2—6||6mm7||%2(1r1)||am7||%2(1r1)||amv||%2(qr1)§ (3.59)
/1 ﬁ'(T)@mmmvammTamv < &‘”ammm'UH%z(Tl) + 05(5, C)H@mmTH%z(Tl)||amU||%oo(T1), (360)
T
/ B (T)Ommm 00 T O ¥ | < C(€)|Ommm || £2(11) |0 | oo (1) || O T[| 2 (11
T

3/2 1/2
< \/§Cﬁ(c)Hammmv”L/2(T1)HammvHL/z(Tl)HamTHLQ(']I‘l)

V2Cs(c)
4e

< EHammmUH%?(Tl) + ||ammvH%2(T1)||amTHi2(T1)- (3.61)

First combining (3.53) and (3.54), and applying Gronwall lemma, one has :
T
Oilng{\!T(t)H?p(m O )} + V/O 10mv ()71 (ot < Cr. (3.62)

Next, combining (3.55), (3.56), (3.57), (3.58), (3.59), (3.60) and (3.61), one finds a constant Cs(¢, c)
such that

1d ~
5 | 10mn T Ol 2zty + [ Omn0 (D[ F2ar | + / (i) = 62)| O] < Ca(e,0) |07l +
(10mm 325 + 19mm 221y ) (14 107 ) 100Ny + 1Oy + 1Ol ey ) |

(3.63)

To apply the Gronwall to the above equality, we need 9,7 € L((0,T"), L*(T')), 0,,v € L*((0,T), L*(T"))
and 0,,v € L*((0,T), L>(T")). The two first part of these assumptions are ensured by (3.62). The
last one is the motivation of Lemma 3.3.2. In consequence, thanks to Lemma 3.3.2 and (3.62), one
easily applies the Gronwall lemma and obtains the lemma. O

And the Theorem 3.3.2 follows. O

25 Singular pressures in the mechanics of compressible fluids



CHAPTER 4

‘—EXISTENCE OF CLASSICAL AND GLOBAL SOLUTION

4.1 Main results

In the previous chapter, we showed that if the density satisfies (3.44), the solution that we built,
is globally defined in time. It is natural to want to know under what condition on the initial data,
(3.44) is satisfied. In [2], Bresch, Perrin and Zatorska address this problem by using the so-called
Bresch-Desjardins entropy with singular pressure on the form :

One observes that the Navier Stokes system can be written as follows :

~ ~2 —

Orv + Om(P(p) — p(p) pOmv) = 0.
Then multiply the second equation of the above system by the so-called effective velocity

o) o

v+ B2,
p

and integrate on T!, one has :

i . (o]

If we assume that the viscosity equals 1, one has a L (R*, L?(T')) bound on the effective velocity
provided that vy + 0, In(py) belongs to L?(T') and therefore 9, In(py) = pd, In(py) € L*(T') and
consequently 9,po € L?(T!), because, it is natural to assume that the initial velocity belongs to
L3(T') when working with the Navier Stokes system with finite energy. This shows that they use
the H' assumption on the initial density in their computations.

In the following, we obtain the same result only assuming finite (small) initial energy and as

a consequence, one obtains the existence of global classical solution of the Navier Stokes system.

+ 6(p)> + /T P'(p)p~0mpl* = 0.
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4.1. Main results Chapter 4. Existence of classical and global solution

The proof is inspired by the Lemma 1.3 of [25]. Throughout this section, the singular pressure
take the form

p’y
Plp)=————, B,7>1 4.2
0= i (4.2
The main result of this chapter is the following :

Theorem 4.1.1. Assume that there exists ag > 0 such that
0<ap< Po < 1— ap.

Then there ezist 0 < a < ag independent of Ey, a non negative constant C' = C(Ey) such that for
all T > 0, there exists ¢ = (T, Ey) > 0 such that

VO<t<T, 0<c<p(t)<(1—a)expC.

) <
In particular, if Ey << 1, then there exists 0 < ¢ = ¢(FEy) < 1 such that :
VO<t<T, 0<c<p(t,m)<c.

Gathering the above theorem, the existence theorem Theorem 3.1.1, the uniqueness theorem Theo-
rem 3.2.1 and the blow-up criterion Theorem 3.3.2, one has the following existence and uniqueness
of classical and global solution of the Cauchy problem associated to the Navier Stokes system.

Theorem 4.1.2. Assume that (po,uo) € H*(T') x H?*(T"), the pressure P is like (4.2) and that
there exists cg > 0 such that
(&%) < £0 < Pmaz — Qo
and the initial energy Ey << 1. Then, there exists a unique classical solution
(p,u) € G(RY, HATY) x (F(R*, HX(TY) N L3, (R*, H*(T))

loc

of the Cauchy problem
Op + 0x(pu) = 0,
Ou(pu) + Dy (pu) + 0,P(p) = Duvt
p(0) = po, u(0) = uo.
Moreover, there exists ¢ = ¢(Ey) < 1 such that for all T > 0, there exists 0 < ¢ = ¢(T, Ey) such
0<e<p<e<l,

and for any T > 0, there exists C' = C (T, aw, ||pol| m2(r1y, [0l #2(r1y) > 0 such that :

T
sup {Jlp(t)lzr2(mr) + w7z } +/ Ozl } < C
0

0<t<T

The proof of Theorem 4.1.1 follows after the following results.
Let us define e and the energy E respectively by :

(o) = [ 572 (P(s) = P@)ds and B() = [ [ott.m)P + e(3t,m)] i

1

W po(x)dx. The classical energy estimate of the Navier Stokes system leads to :
T

where p =
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4.1. Main results Chapter 4. Existence of classical and global solution

Proposition 4.1.1. Assume that (po, ue) € (HX(TY))>. Then,
T
sup E(t)+/ / p10mv|?(t, m)dtdm < Ey
0<t<T 0 Jm
with
Eo= [ [loa(m)l? + e(Ga(m)] dm < oo,
TL‘I

Let us define ¢ by

ettm = [ [ P e KL 43)

The function ¢ is a periodic function differential so that we can use it as test function in the
momentum equation. The exceptional feature of ¢ is that its space derivative can be bound by
below when the density is closer to 1.

By testing ¢ with the momentum equation, one has the following :

Lemma 4.1.1.

[ Lol f g

< 2EYMY? + VTEL? [|T1|1/2Eé/2 + M2 1+ |T1|—1/2M§/2H (4.4)

d
My = / Bl
T Po(m)
Because of the singularity of the pressure it is not sure that P(p) is integrable. But, the above
lemma leads to the following :

with

Lemma 4.1.2. One has P(p) and p~'P(p) are L'((0,T) x T?).

From this lemma, one deduces a lower and up bound for the density when the initial energy is
small. The result is stated in the following :

Lemma 4.1.3. There exist 0 < a < o independent of Ey and a constant C' = C(Ey) going to
zero when Ey tends to zero, such that

p<(1—a)expC.
In particular, for small Ey, one can bound the density far from the singularity of the pressure.
Lemma 4.1.4. There exists a constant C = C (T, Ey) such that

VO<t<T, p(t)=C.

28 Singular pressures in the mechanics of compressible fluids



4.2. Proofs Chapter 4. Existence of classical and global solution

4.2 Proofs

Proof of Lemma j.1.1. Testing ¢ defined in (4.3) with the momentum equation, one obtains
T
/ o(T,m)p(T,m) — / v(0,m)p(0,m) = / / v(t, m)opp(t, m)dtdm
(T1) T! 0o Jm
T
+/ / (P(p) — pOmu(t,m)) Opmp(t, m)dtdm. (4.5)
0o Jm

Noting that

1 1 m o
dp(t,m) = v(t,m) — ] /T v(t,q)dg = ] /T / dyv(t,q')dq dg
1 1 q

1 1 dq
pt;m) [TV Jm p(t, )

and
am(p(t, m) =

then (4.5) implies

//T ﬁ){l'ﬂ}l /TT 1] (tm)dtdm = | (0, m)p(0,m) - / o) o(Tm)
ek [t [ [ et i

[t [ [ 49

In the following we estimate terms appearing in the right hand side of the above equality. We
begin by the third term.

/OT /Tl v(t, m) /Tl /qm Dyv(t,q)dq dgdmdt < /OT { T1|U(t,m)!dm} [/Tl!@qv(t,q)\dq] dt
< [/OT { Tl\v(t,m)!dm} 2] N [/OT {/Tl\aqv(t,q)]dq} 2] "
<[ [ [ Jete.mipam] N [ [ wt.oral "

1/2 T
< IT'WT [ swp [ (. m>r2dm} [ Iy raqv@,qwq]
ot<T J11 0 T1

Then, using estimation in Proposition 4.1.1, one obtains :

1/2

T m
ot m) / / dpv(t,d)| < |T'VTE. (4.7)
T! T Jg
The last terms
dq 172 dm 1'? s dm 1'?
[ |5 | 7 o Bolm) T mm
(4.8)
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4.2. Proofs Chapter 4. Existence of classical and global solution

As well
dm 12
[ vompo.m = [ ommyer, m>] <o | [ ] (19)
T1 (T1) Tl po(m)
Then, combining (4.6), (4.7), (4.8) and (4.9) one obtains (4.4). O

Proof of Lemma /.1.2. The proof consists in separating the integral of (4.4) into two parts : where
the density is closer to 1 and its complementary.
For i > 0 let us define I'(¢t) = {m € T': p(¢t,m) > n} and set
I 1-c¢ dq
n T Jm pola)

On I'(¢),

\Tl\ T! PO(Q) \Tl\ T! PO(Q)
With the uniform boundness of the initial den81ty, one can choose a very small € > 0 such

n=(1-¢) T UT /%d—gﬂ 7

a<1—y’11"1|{/wﬁj—(qq)]_l.

This is possible provided that the initial density is not identically 1

On I'“(t), there is no singularity and
1 _dg l < = € _dq

[T Jr: pola) [T+ Pola)

then one has, with increasing pressure

/ / PO [ 5] @ < S [ 2
thus

/OT/F@)P@LT;W 3 pj(z) 1} t, m)dtdm < / /T1 ﬁ)|:|1;1/ = %] (. m)dtdm

1P | ﬁj_é)

1 dq 1> € dq

<1,

for example

As well

/ / m\{l'ﬂ}ll m P(q) } U /T m{lTl /T ()_%']JFETI;(IW)/TI ﬁj(qq)]

And consequently, P(p) and p~!P(p) are L'((0,T) x T%).
Moreover, using Lemma 4.1.1, there exist two constants C7, and Cy depending only on Ey, with
(1 tending to 0 when Fj tends to 0, such that

I1P(P) o)<y + 17~ P(@) | £aomy<my < Cr + CoT (4.10)

30 Singular pressures in the mechanics of compressible fluids



4.2. Proofs Chapter 4. Existence of classical and global solution

Remark 4.2.1. Let us remark that Cy is given by :

T! 2
Co = PO+ I aag o gy [1v e

and

1 1
Cy = -M! {2E3/2M01/2 + éEo]
£

and n and € do not depend on Ey but only on ay.

Now, we turn back to the proof of Lemma 4.1.3.

Proof of Lemma 4.1.5. Let us rewrite the Navier Stokes system in mass-Lagrangian coordinate

{8tﬁ+ 5200 = 0, (411)
Ov + O (P(p) — pOyv) = 0.
Multiplying (4.11), by p~!, one obtains
op(T) = —pOpmv
where 1 is the logarithm function. Then (4.11), becomes
Oy (v+ 0n0(p)) + 0 P(p) = 0. (4.12)

Integrating the above identity on (I, q) with respect to m, and on the T'! with respect to [, one
has :

0, (p(t,q)) :—P(ﬁ(t,q))—% /T 1 /Z " o(t, m)dmdl + /T P(p(t.1))dl - /T POnv(t D)L (4.13)

Let us observe that, after the integration over ([, q), one replaces 9y1(t,1) by —p0,,v(t, 1) before
integrating on the torus with respect to I. Now, we fix ¢ € T'. For 0 < o < o, we know that the
set

Au(q) :={t€]0,T]: YO < s <t p(s,q) <1—a}

is not empty since 0 € A,(q). Let t,(q) be the upper bound of A,(¢g). As we don’t know the
monotony of p(t, -), namely the sign of 9,,v(, -), we are unable to prove that V¢t > t,, p(t,q) > 1—a.
But, thanks to the continuity of p, one can write {t > t,(q): p(t,q) > 1 — a} as union of intervals.
Let (s,t) an interval of the union, for any ¢’ € (s,t), one has p(t’,q) > 1 — « then

P ) < - (a.19
Integrating (4.13) between s and ¢’ one obtains :
(Pt q)) = (p(s,q) = —/ P(p(r,q))dr + b(t') — b(s) (4.15)

with

b(t) = /O t /T P(p(s,1)dsdl - /0 t /T POho(s, Ddsdl /T 1 /l "ot m)dmdl.
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By following what we did to get (4.10), one obtains :

/ / del 01 + 02<t - 8)
T1

As well, using the energy estimates, ones has

v E, 1
/ / pOmu(r, Ddrdl < EY*VE — s < 70 +5(t' =)
s T1

// (t',m) m))dmdl < 2Eé/2.
T

Combining the three above inequalities, one has :

and

L —s) (4.16)

b(t') —b(s) < C(Ey) + (Ca + 5

with a constant C' depending on Ej and goes to zero when Fj tends to zero.

Let us take o small such that
Ot 1 o (1—a)”
2T o™ 48

and combine (4.14), (4.15) and (4.16), to obtain :
D(p(t',q)) — ©(p(s, q)) < C(Ep).

Then, noting that, by continuity of the density, p(s,q) = 1 — a, one gets other {t > t,: p(t,q) >
1—a}
(p(t', q)) < C(Eo) + (1 - a).
Since C'(Ep) neither a does not depend on ¢ , we conclude that the density satisfies the bound
U(p) < C(Ep) + (1 — o).
Let us recall that 1 is the logarithm function, so we obtain :

p < (1—a)exp(C(Ey)).

By the Remark 4.2.1, when FEj tends to zero, C5 does not tend to infinity but decreases and
consequently a do not tend to zero so can be bound by below. O

Proof of Lemma /4.1./. The momentum equation in mass-Lagrangian coordinate is written:

9, (v + Ontb(7)) = —0mP(D). (4.17)

Integrating (4.17) on (q,q’) with respect to m and then integrating the obtained equation on the
T! with respect to ¢/, and finally on (0,t) in time, one has,

) /w/fvo Jdm - /T/ tmdm"i_/wln((tCI))dQ—I-ln(po())
/Tlln po(q')) dq +//1rl dqu—/OP(p(s,q))ds_ (4.18)
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From mass conservation equation in mass-Lagrangian coordinate, we have

d

1/2
— ln( p(t, m))dm:/ p(t, m)0,v(t,m)dm < {/ ﬁ|8mv|2dm} :
dt T1 T1

Then integrating the above inequality on (0,¢) and combining with (4.18), one has

s o [ [ e

+1n (Folq //T dqu—/o P (5(s,q))ds. (4.19)

Each terms appearing in the right hand side of the above equation can be bounded by a constant
depending only on the initial data and 7". This ends the proof. O

1/2
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CHAPTER 5

WEAK SOLUTIONS A LA HOFF

This chapter is devoted to constructing a distributional solution of the Navier Stokes system with
singular pressure only assuming that the initial energy is small. We use techniques introduced
by Hoff in [12, 13] to obtain for example that the space derivative of the velocity d,u belongs to

Li (R*, L>°(T')). This enables us to formally define the flow associated to the velocity u. In the
sequel, the viscosity is constant taken equal 1 and the pressure is :
o
Pp) = (5.1)
(1—=p)?

We mainly exploit || for Hoff estimates.

5.1 Main result

The existence result of weak solutions a la Hoff is stated in the following theorem.

Theorem 5.1.1. Let ug € L*(T'), po € L>®(T') and assume that there exists ag > 0 such that
O<ag<p<1l—ap.

Then there exists a non negative constant ¢ such that if the initial energy

7 P(s) — P(po)

= ds and pg = po(x)dx

Ey:= [ po(|uol” +elpo)) with e(po) = /

1
™ 7 T

satisfies Fy < ¢, then there exists
(p.u) € L¥(RF, L¥(TY) x (LA(R*, H'(T) 1 L™ (R, LX(T"))
distributional solution of the Navier Stokes system :

Op + 0y (pu) =0,
O (pu) + 0p(pu?) + 0, P(p) = Opu, (5.2)
p(0) = po, u(0) = up.
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Moreover,

Sgp/ p—+/ /Tllaz * < (5.3)

and for all T' > 0 there ezists a constant C(T, Ey) such that :

/ / ool + 5 swp o(t) [ o) <O
T1 T1

O<t<T

T
swp a*(t) [ gl + [ [ oo.aP <o
o<t<T T 0 T

where o(t) = min (1,t) and & = Jyu + ud,u the material derivative.

The proof of this theorem is done by a mollifying method : first, we mollify the initial data
(po,up) to obtain a sequence of regular function (pf,uf). The smallness of the initial energy
guarantee, thanks to Theorem 4.1.2 that the Cauchy problem associated to the Navier Stokes
system with the initial data (pf, ) admits, a global classical solution (p™,u™). Finally we prove
that (p™, u™) admits a sub-sequence that converges weakly to (p,u) distributional solution of (5.2).
The main difficulty is to identify the weak limit of (P(p")),. Everything that follows is devoted to
the proof of the above theorem.

5.2  Uniform estimates

5.2.1 Mollifying of initial data

Let y: T! — R* a smooth function satisfying 0 < y < 1 and / X(t,z)dr = 1. For all n € N*| let
T1

us set )
Xn = nx(g); Py =p*Xn and uy = ug* Xn.

Using Young inequality and the convolution formula one obtains easily that
VneN ap<pp <1—ap.
The smallness of Fjy and the smoothness of pj and ug ensure that the Cauchy problem
p + Oz (pu) =0,

Or(pu) + 0, (pu?) + 0, P(p) = Orau, (5.4)
o(0) = i, u(0) =

admits a unique, classical and global solution (p",u") such that p" € %€([0,+o0), H*(T!)) and
u" € €([0,+00), H*(TY)) N L2 (R, H3(T')). Also, there is a small 0 < a = a(Ey) < ap and for

loc

all T' > 0 there exists ¢ = ¢(T") > 0 such that
Vn 0<c<p"<1l—a. (5.5)

These regularities on p" and u" justify all computations in sections 5.2.2 and 5.2.3.
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Remark 5.2.1. [t is important to note that the uniform bound (5.5) of the density ensures that
P(p™) and P'(p") are bounded in L>=((0,T) x T') independently of n because the density is far
from the singular point of P, uniformly in n.

The classical energy estimate leads to the following proposition.

Proposition 5.2.1. For anyT > 0

T
sup B0 0)+ [ [ 100 < By

o<t<T

In what follows, we use techniques introduced by David Hoff in [12, 13] to obtain two additional
estimates on (p™, u™). Let us recall that (p™,u") satisfies

Oyp" + 0. (p"u™) = 0,
{@(pnun) 0, (p" ()2 + P(p") — Bpu”) = (5.6)

and introduce the material derivative u" = 0;u™ + u"0,u", p" = Op™ + u™d,p" and observe that
the above equation can be written as follows :

pr == (5.7)
P 4 O P(p") — Oppu™ = 0. '

5.2.2 First Hoff energy

The first estimate consists in multiplying the (5.7), by the material derivative of u™. The statement
is the following :

Proposition 5.2.2. There exists a constant C(T, Ey) such that :

/ / op"[u"? + = sup o(t) [ |0.u"(t)]* < C. (5.8)
! T!

O<t<T

Proof. Multiplying (5.7), by 4" and integrating on T, one obtains :

/ Pl + / W0, P(p")+ [ 0.4"0.u" = 0.
il !

The last term in the above equation is :

1d 1
00" 0" = =~ — 0, ni2 | - o,u" 3
/Tl WO = S Tl‘u|+2/1p(“)

and the second one is :

/Tl "0, P(p") = —%/Tl P(p™)0,u" — /Tl p" P (p™) (D,u ) .

Gathering the three above equations, one obtains :

[oomtiep 55 [loark =5 [ proar+ [ orPi) @y -5 [ @y
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5.2. Uniform estimates Chapter 5.  Weak Solutions a la Hoff

Next, one multiplies the above equation by o(s) = min(1,s) and then integrates on (0,t), one
obtains :

min(1,t)
/ [ ortire s o) [ o =5 [ [ 0P ot [ PGmon
T1 T1 T!
mlnlt t
/ / MO u" —i—/ / ap"P'(p" &Eu")z——/ / o (0,u™)®. (5.9)
']1'1 Tl 2 0 ']Tl

The first term of the right hand side of the above equation is controlled, thanks to the classical
energy estimate by Ey/2. As well, thanks to the boundedness of P(p") and P'(p") in L>=((0,T)xT")
(see Remark 5.2.1), for € > 0, one has :

o) [P0 <zott) [ 10wl + o) [ PUIY

min(1,t) pt mm(t 1) min(¢,1)
[ [ remaar< | o+ [ /
0 0 0 T! T!
t t
/ Up"P’(pn)|3xu”|2 < / g||pnP/(pn)||Loo(T1) /1|(9xu71|2
0 0 T

Gathering the three above equations and owing to the boundedness of the density, one has the
following inequality with a constant C' = C(e, Ej)

min(1,t) t
o) [ P~ [ / Mo+ [ op P o
0

t
sa(t)/ |3xu|2+C+C’/ / olowun 2. (5.10)
T 0 T

and

It remains estimate for the last term in (5.9).
t t t
| [ oy < [ aloariaaloar = Pl + [ ol e 1Pe) )
0 0 0
< 1 ! 1/2 ou — P(p" 2 l ' 3/2 Ou™ 4
<5 [ 0 — PO ey + 5 [ 00 e
0 0

t
+ [ a0 e | P o,
By Gagliardo Niremberg inequality, one has :
[0 — P(o") ey < 2000 = P(0") |l 0" oy (5.11)

3 | o0 = P ey <= [ [ ot - [ ot = PO ey
0 0o JT! €Jo

thus, one can write

[ [y <c [ [ amire+ L [ 1o = P,
T! T!
5 [ 10 e [o [ 10] + [ ol0a o PGP
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And thanks to the energy estimate, and the boundedness of the density, one has the following
inequality with a constant C' depending on Fy and T :

¢ t t
/ / o(0u™)? < C + 5/ / op"|u"* + C’/ [1 + ||0IU”H%2(T1)} {0/ |0xu”|2} : (5.12)
0 JT! 0 JTt! 0 T1

Gathering (5.9), (5.10) and (5.12), taking ¢ = 1/4 one has :

! T 1 n ! n n
/ / ol |2+§a(t)/ D, < c+o/ 1 " e [a/ 0, |2]
0 T1 T1 0 T

Thus applying the Gronwall lemma, and then Proposition 5.2.1 one obtains :

[ oo+ got) [ oart < [ [+ 1oale] < 0@ B
T

Which concludes the proof of the proposition. m

5.2.3 Second Hoff energy

The second Hoff energy estimate consists to apply the operator A := 0, + u" - 0,, to the equation
(5.9), to obtain higher order estimates. The statement is the following.

Proposition 5.2.3. There ezists a constant C' = C(T, Ey) such that :

wwo/mtﬁ//ﬂmw (5.13)
o<t<T T1

Proof. Let us begin the proof by the following computations :
/ W (9 + u) (p"i") = / Wy (p"i") + / W, (p"u")
T! T1 T!
d n 2 n *n n n- -n -n . n
p|u| prut o™ — | ptu" 0, (W u™)
dt Tl Tl
1 d - n - (0 n, n U" 2 n|,,n n
=54t /. p”]u |2+/|u 20p —/pu@x|2| —/Tlp|u 10,u

1d n|2 n - n|,,n|2 n
Qﬁpmrﬁwmwm »Amwm

SO

o N 1d n nlen n
/ " (O +u" - 0y) (p"U") = th/ P ]2—/ P P Opu". (5.14)
T! T1

Next,

/ W (9, + u"0,) B, P (") = / WP (") + / W0 P ()
'[[‘1 ’ﬂ‘l Tl
=— [ 90,u"P (p”)atp”+/ WU 0y P (p")
’]I‘l

’]Tl

_ / P/ (0") 0,70, (o) + / WD P ()
Tl T1

_ / WD, P () + / PP (o) DDy — | 0 (imu™) 8, P (")
T! T!

T
:/ p" P’ (p”)@xunﬁmu"—/ W 0,u" 9, P (p") .
T1 T1
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By the momentum equation, one has 0, P (p") = Op,u” — p"4™, then

/ " (0 +u"d,) 0, P (p”):/ p"\a"\zﬁxu"—/ W0 u™ mu”+/ PP (p") Opu” 0"
T1 T1 T1 T!
1
:/ p”|u”|28xu”+—/ yaxunﬁaruu/ p" P (p") dpzutd,a". (5.15)
Tl 2 ']1‘1 T

As well

/ U (O + u"0y) Opput™ = 0,0 Oyt —/ Ot O (u™u™) . (5.16)

Tl Tl Tl

The last term of the right hand side of the above equation is :

/ Oyt Oy (u™u™) :/ u” mu"&gu”—i—/ WOyt Oy tt”
T! T! T!

1

= —— [ |0u"P00" — Opu" 0y (U0, 1")
2 T1 ']1‘1
3 -n n|2 n n -n

= —= 0, "0 u™|” — u" Opu" Oyt
2 Tl Tl

SO
Oprtt" 0y (u"u™) = O (u"0pu™) 00" — = O, u" |0 u™ % (5.17)
T1 T1 2

Then combining (5.16) and (5.17), one has :

3
/ W (0 + U 0y) Opott™ = = | 0™ 0pu® — | 0y (WOu™) Oyt — | Dyt Oy
T 2 T1 T1 T
3
= = D" | Opu™|* — 00" 0, (Opu™ + u"0u"™)
2 T1 T
. n n n 3 N n|2 © 1|2
W (O +u™ - Oy) O = = [ 00" |0u" |7 — | |00 (5.18)
T 2 T T

Applying the operator 9;+u" -9, to (5.7),, next multiplying by 4", integrating on T' and gathering
(5.14), (5.15) and (5.18), one obtains :

1d

- p |un|2 |8I7:Ln|2 _ |8xu”|20$u”—/ p”P’(p”)&xunﬁxu”
2 dt Tl Tl T1

Next multiply the above equation by o2 and integrate in time on (0,¢), one has :

1 t min(1,t) t
—0'2(t>/ pn|un|2+/ / 0_2’amun|2:/ 0_/ pn|un|2+/ / 0_2‘8mun|2awun
T 0 JT! 0 T1 T
/ / PP (p") 0 um0, 4", (5.19)
T1
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The first term of the right hand side of the above equation is easily controlled thanks to the
classical energy estimate. The last one is estimated, because of the boundedness of P'(p") in
L>((0 T) x T') (see Proposition 5.2.1), as follows :

t
/ / 10,0 + 10" P () e e / / oD,
T1 E 0 Tl

Thanks to the energy estimates and the boundedness of the density, one has :

t
5/ / o?|0u"? + Cy (5.20)
0 T

t
with C; a constant depending only on 7', € and Ej. It remains to estimate / / 0?0, u" | 0,1".
0 J1

One has :
1 ! 2 ‘n|2 ! 2 n||4
< - o laxu ’ + o H@zu ||L4(T1)' (521)
4 Jo Jm 0

The last term of the above equation can be estimate as follows :

t t
[ 10 < [ 0o [ o < swp o Gl [ [ 0
(5.22)

t
By the classical energy estimate, / |0,u™|? is controlled by Ejy, but
0o Jm

2p" P! (p™)0pu" Oy tt™

’]I‘l

an”P’(p”)E)Iu”E)xu” <

'H‘l

029" 20, "

T

()| (t) = P(p" ()| Foe 1y + 202 P(0") | 700 ¢ty

O (D135 (1) — P(0" (1)) e 7" 2y + 207 [P0 [y
1 n 7 n
3= (P10 oy + PP ey) 2 [ o*rlin
+ 207 P(0") e o

Owning to the previous energy estimates Proposition 5.2.2 and the boundedness of P(p") in
L>((0,T) x T!) Proposition 5.2.1, there exists a constant Cy (e, T, Fy) such that

PO Ol ey <2 [ o+ Co (5.23)
T

Gathering (5.21) (5.22) and (5.23), one obtains :

1 t
Z/ / 0?0, 4™ |* + Ey [02+s/ a2p”|u”|2} (5.24)
Tl Tl 1

Next, gatherlng (5.19), (5.20) and (5.24) one has the following estimate with a constant C3 =

(T, Ey) t t
02(75)/ p”!u"|2+/ / ?19,u"* < Cs {1+/ / 02p"|u”|2} :
T1 o JT! 0 JTt

Applying the Gronwall lemma, one obtains :
sup () [ o7l (o) + / | o < et B
0<t<T O
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5.3 Passage to the limit

According to Proposition 5.2.1 sequence (u"),, is bounded in L*((0,T), H*(T')), but one has only
a weak convergence despite the fact that the embedding H?(T') < L?*(T') is compact. To pass
to the limit in nonlinear terms (p"u™),, and (p"(u™)?), one needs a strong convergence on (p"),, or
(p"u™),. For this end, let us use the compactness lemma of Aubin-Lions Lemma A.3.1 similar to
the one of Ascoli-Arzéla.

5.3.1 Main steps of the proof

Proposition 5.3.1. Sequence (p"),, is compact in € ([0,T], H ' (T")) whereas (p"u™),, is compact
in L*((0,T), H~1(T")).

Remark 5.3.1. By this proposition, up to extraction, there exists p € €([0,T], H (T")) such
that :
(0" )n = p in €([0,T], H'(T")).

On the other hand, as (u™), is bounded in L*((0,T), H'(T")) then, up to extraction, (u™), con-
verges weakly to some w in L*((0,T), H'(T")). Therefore (p"u™), — pu in D'((0,T) x T'). This
implies that (p"u™),, converges strongly to pu in L*((0,T), H~Y(T")) and adding the fact that (u™),
converges weakly to w in L*((0,T), H'(T')) one has (p™(u™)?),, — pu® in D'((0,T) x T). As (p")n
is bounded in L°°((0,T) x T), so (p"u™), is bounded in L>((0,T), L*(T')) and by the mass con-
servation equation, (Oyp™), is bounded in L>=((0,T), H *(T")) so up to extraction, (J;p")n —* Oip
in L=((0,T), H1(T")). Consequently, p and u satisfy, in sense of distribution the mass equation :

Oru + Oz (pu) = 0.

For the momentum equation, (P(p™)), is bounded in L>=((0,T) x T') and (u"), is bounded in
L2((0,T), HY(TY)), then (0y(p"u™) = Oppu™ — 0, P(p™) — Ox(p™(u™)?)),, is bounded in L*((0,T), H~*(T"))
so converges weakly to Oypu in L*((0,T), H(TY)). As well (P(p™)), —* P(p) in L=((0,T) x T").

One concludes that p and u satisfy the following equation in sense of distribution.

O (pu) + 0p(pu®) + 0, P(p) — Oppus = 0.

It remains to prove that P(p) = P(p).

We will use the renormalized solution theory introduced by Pierre Louis Lions 18], see also
[21] and theory of convex function to obtain a strong convergence of (p™), to p in a Lebesgue
space. Which ensures that (p"),, converges almost everywhere to p and then, one can deduces that
P(p) = P(p) by Lemma A.3.2.

Multiplying the mass conservation equation (5.6), by b'(p™) where b € €*(0, 1), one has

0ib(p") + 0:(b(p")u") + [V (p") — b(p")] D™ = 0.
In particular, for b(t) = tlog(t), the above equation becomes
O™ log(p™) + 0z (p" log(p™)u™) + p"d,u™ = 0. (5.25)

In the following we will pass to the weak limit in the above equation. To this end, we will use
Lemma A.3.3 that gives the weak limit of the product of two weak convergence in Lebesgue space.
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Lemma 5.3.1. Sequence (p™log(p™)), converges weakly to some plog(p) that satisfies we following
equation :

Oplog(p) + Oy <plo—g(,0)u) + pdyu = pP(p) — pP(p) in D'((0,T) x T). (5.26)
Remark 5.3.2. Recall that p € L¥((0,T) x T), u € L*((0,T), H'(TY)) satisfy
Op + O0x(pu) = 0.
The function b(t) = t1n(t) is continuous on [0, 1] provided that it is extended by 0 att =0 and
be ?(0,1). As 11_{% tY2log(t) = 0 one can use b in Lemma A.3.} and obtains :
O (plog p) + 0z (plog(p)u) + pdyu = 0. (5.27)

Then substituting (5.29) and (5.27), one has :

d; (plog p — plog p) + 9. ((plog p — plog p)u) = pP(p) — pP(p).

In the following, we will prove that pP(p) — pP(p) < 0. To do so one will use Lemma A.3.5.
Lemma 5.3.2. One has :
d; (plog p — plog p) + 8. ((plog p — plog p)u) < 0. (5.28)

The only strong continuity p that we have at this time is that p is continuous in values in H~'(T%).
Using Lemma A.3.7, one has the following.

Lemma 5.3.3. One has plog(p) € €([0,T], LP(T")) for all 1 < p < 2.

Then integrating (5.28) on the torus, one obtains the following :
Lemma 5.3.4.

/Tl (plogp — plogp) (t) <0

Therefore plog p = plog p almost everywhere and consequently as the function ¢ — tlogt is strictly
convex, one deduces that (p"), “— p strongly in L*((0,7) x T"). This result is proved in [¢]. In
particular (p™), converges almost everywhere to p and as P is continuous and (p"),, is uniformly
far from 1, (P(p")), converges almost everywhere to P(p) and as (P(p")), converges weakly to
P(p) then P(p) = P(p). In fact this is due to Lemma A.3.2. Consequently the existence part of
Theorem 5.1.1 follows.

5.3.2 Some remarks

Let us recall that we proved two additional estimates (5.8) and (5.13) that give, because of the
uniform bound of p" (5.5), a L*((0,T) x T') bound on (¢'/?u")), and the effective flux F™ =
Opu™— P(p") is such that (¢1/20, F),, is bounded in L2((0,7)x T'). This implies a weak convergence
of ('/24™),, to some o'/?v € L%((0,T) x T'). By considering the measure odz instead of the
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Lebesgue measure dz, one proves that estimates (5.8) and (5.13) are conserved after passing to
the limit. In the following lines we will prove that v = 4.
Coming back to (5.11), one has the following

‘71/2||@xun||2moar1) 20| 0u" — P(P”)”%oo(qu) + 2||P(p”)||%oo(T1)

<
< 40|0su™ = P(p") || 210" 0" [ T2 ey + 211 P (0" 7o )

< 200" = P sy + 2 [ on"lie P+ 2P

Then integrate in time on (0,7) and use the classical energy estimate (5.3), the first Hoff energy
(5.8) and the uniform bound on the density, one has :

t
| o0 ey < ol o),
0
Next, by Cauchy Schwartz inequality, one has :

T T 1/2 T
/ Hamun”Loo(Tl) < |:/ 0'1/2:| |:/ 01/2H8xu"H%oo(T1)
0 0 0

T
Near 0, o~'/2(t) behaves like ¢~/2, then the factor / o~'2 is integral, thus one concludes

1/2

that (9,u"), is bounded in L'((0,T),L>(T")). As We0 prove, (u™), converges weakly to w in
L*((0,T), H(T")), it follows that d,u € L'((0,T), L>=(T")).

By the first Hoff estimate (5.8), (al/zpl/Qu”)n is bounded in L*((0,7) x T') and owing to
the boundedness of (u™), in L*((0,7), H'(T')) and the uniform bound on the density, one has
(a1 20" = o'20" — o'/2u"d,u™),, bounded in L?((0,T) x T') and so converges, up to extraction,
in sense of distribution to ¢'/20,u. Consequently, one has u Holder in time, indeed, for almost
every 0 < s <t < T, one has :

o'2(s)||u(t) — u(s)llz2r
(t —s)l/2

u(t, ) — u(s,x) :/ Owu(r, x)dr =

) < ||0'1/28tu”L2((0,T)><'J1‘1)-

Furthermore, owing to the boundedness of (u"), in L*((0,T), H'(T')), so (u"d,u™), admits a
subsequence that converges in sense of distribution to ud,u. It follows that v = . Finally,
because d,u € L'((0,T), L>(T")), one has :

u(t, z) — u(t, y)
T —y

u(t,z) —u(t,y) = /:D Opu(t, z)dz =

’ < ||(9mu(t)||Loo(T1)

5.3.3 Proofs

Proof of Proposition 5.5.1. In one dimension, the Sobolev embedding L*(T!) — H~(T') is com-
pact. As T! is a bounded set, L>(T!) — L?(T!) is a continuous embedding, then the em-
bedding L>*°(T') — H~'(T') is compact. From Proposition 5.2.1, one has (p"u"),, bounded in
L*((0,T) x T') then by the mass equation (9;p"),, is bounded in L*((0,7), H~'(T")). Then ap-
plying Lemma A.3.1 with X; = L>®(T') and X = X, = H'(T"') one obtains the first part of the
proposition.
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From Proposition 5.2.1 and Remark 5.2.1, one has (9,,u™), bounded in L*((0,T), H~(T"))
and (9, P(p")),, (0:(p"(u™)?), are bounded in L'((0,7), H *(T")), and therefore, one concludes
that (9;(p"u™)), is bounded in L'((0,T), H *(T')). By Holder inequality, (p"u™), is bounded
in L*((0,T) x T'), thus using Aubin-Lions Lemma A.3.1, one obtains the second part of the
proposition. O

Proof of Lemma 5.3.1. We know that (p"), is bounded in L>((0,7) x T') so, in particular, in
L*((0,T) x T'). The fact that (p"), is bounded in L°°((0,7) x T') and (u™), is bounded in
L*((0,T), H'(T")), leads to, thanks to mass conservation equation (5.6); (9;p"), bounded in
L*((0,T), H'(T")). Let us set F™ = 9,u™ — P(p") the so-called effective flux. By the first
Hoff energy estimate Proposition 5.2.2, (01/2axF”)n is bounded in L?((0,7) x T') and therefore

li 1/2 n(. . 5 n = 0.
linlo™= (F(- + &) = F)llz2(om)x) = 0

Indeed e
FM(t,2+€) — F(t,2)] < / 0. F" (1, y)ldy —

|02 (F™(- 4+ &) — F) || 20,myxm) < |5\1/2\||<71/28xF ||L2((0,T)x1r1)/ =50

bounded
Then using the Lemma A.3.3 one has (o/2p" (9,u™ — P(p"))), — o'/?p <8$u — W) in D'([0, T x
T'). We know that (p"P(p™)), is bounded in L>((0,7) x T') so, up to extraction, (p"P(p")), —*
pP(p) in L*®((0,T) x T') then (0'/2p"d,u™), — o*/? (paxu + pP(p) — pP(p)) in D'([0,T] x T).
Let us prove that (p"0,u™),, — pdyu+pP(p)—pP(p) in D'((0,T) x Tt). Giving » € D((0,T) x T!).
There exists a large IV such that suppy C (%, T) x T' so 0~'/%¢ is well defined and with compact

support but not too regular to use as test function because o’ is a Heaviside. To get around the
—-1/2 se f -1/2 U . —1/2 . .
quence of o . Using 0. " “¢ as test function, one has :

difficulty, one use a mollifying o,
T
/ /0 Y2pptOpu” %/ / p3U+pP() pP(p))-
0o Jm T1

By dominated convergence theorem,

T T
pp"dyu" = lim o2 2 pn 0, u"
o Jr e=20Jo Jm )
/ /0 o; p8u+pP() HO/ / pdzu+ pP(p) — pP(/)))-
T! T!

Consequently,
/ /sop"au —>/ / pOzu + pP(p) — pP(p))
Tl Tl

for any ¢ € D((0,T) x T'). Therefore (p"d,u™),, — pdyu+ pP(p) — pP(p) in D'((0,T) x T).
Also sequence (p log(p™)), is bounded in L*>((0,7) x T') and by (5.25), (Orp"™log(p™))n is
bounded in L*((0,T), H*(T")) + L*((0,T) x T*) < L*((0,T), H *(T")) then by Lemma A.3.1
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(p"log(p™)), is compact in L2((0,7T), H*(T")), so up to extraction, sequence (p"log(p™)), con-
verges strongly in L2((0,7T), H *(T")) to some plog(p) and as (u™), — u in L*((0,T), H(T")),

then (p"log(p"))au" — plog(p)u in D'((0,T) x T') and ((0, (p" log(p™)u")),, — Os (plog(p)u) in
D'((0,T) x T'). Finally as (0;(p" log(p™))),, is bounded in L*((0,T), H~'(T")), then up to extrac-

tion, (0;(p"log(p™))) converges in sense of distribution to d;plog(p). Then passing to the weak
limit in (5.25), one obtains :

O o) + 0: (plog(p)u) + pdu = pP(p) ~ pP(p). (5.29)
]

Proof of Lemma 5.5.2. The pressure (5.1) is a non decreasing function and (p"), is bounded in
L>=((0,T)xT!) soin L'((0,T) x T') then (p"),, converges weakly to p in L*((0,7) x T!). According
to Remark 5.2.1, (P(p™)), is bounded in L>=((0,T)xT") so in L'((0,T) x T') then converges weakly

to P(p) in L'((0,T) x T'). It is obvious that ((P(p”) — P(p))p) — 0in L'((0,T) x T') since, for

any ¢ € L>((0,T) x T') one can use py as test function in the formulation of the weak convergence

(P(p™)), — P(p) in L'((0,T) x T'). Also (P(p™)p"),, is bounded in L*((0,7) x T') so converges
weakly to some P(p)pin L'((0,T)xT!). Finally, for any ¢ € L>((0,T)xT') one can use P(p)yp as
test function in the weak convergence (p™), — p in L'((0,7) x T') and obtains (P(p)p™),, — P(p)p
in L'((0,7)x T'). Then using Lemma A.3.5, one concludes that P(p)p > pP(p) almost everywhere
and the lemma follows. O

Proof of Lemma 5.3.53. We know that L*(T') embeds continuously (compactly) in H~*(T') and
the dual of H~'(T!), that to say H!(T!) is separable and dense in L*(T'). As by the mass
conservation equation (9;p"),, and by (5.25), (9,(p™ log(p™))),, are bounded in L*((0,T), H*(T")),
one obtains for any ¢ € H'(T'), mappings

t— <pn(t), (10>H—1(11‘1)7H1(']1'1) and ¢ +— <(pn log pn)(t), (10>H—1(’]I‘1)7H1(']1‘1)

are uniformly continuous in ¢ € [0, 7] uniformly in n. Applying the Lemma A.3.6 one obtains,
(p™)n and (p™log(p™)), are compact in € ([0, 77, L2 (T")). Therefore, up to extraction

(P")n = p i €([0,T], L2(T")) and (p"log p"), — plogp in €([0,T], L2, (T")).

In particular, p € €[0,T], L2 (T')) and as we know p € L>((0,T) x T'), u € L?((0,T), H'(T"))
and satisfy in D'((0,T) x T') the transport equation

Op + 0x(pu) = 0,
so by Lemma A.3.4, for all 6 € (0,1/2)
00 + 0,(p%u) + (6 — 1)p%0pu = 0 in D'((0,T) x TY).

and together with Lemma A.3.7, one concludes that p € € ([0, T], LP(T")) for any 1 < p < 2. This
last result allows us to obtain plogp € € ([0, T], LP(T")) since, by mean value theorem,

lplog p(t) — plog p(s)|[ ey < (1 —log(a))llp(t) = p(s)|Le(r)- O
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Proof of Lemma 5.53.4. Let ¢ € €(T') such that ¢ = 1 on B(0,1/2) and suppy C B(0,1). For
any R > 0 let us define o = ¢(-/R). One can use ¢ as test function in (5.28), and then obtains :

t 1 t 1
U (plog p — plog p) @R] — }_%/ / (plog p — plog p) ud.p(-/R) < 0. (5.30)
Tl S S T

As plogp € ([0, T], LY(T")) and plogp € €([0,T], LL(T")) then,
plogp —plogp € €([0,T], L, (T"))

SO

7= | (plogp—plogp) ()"
T

is continue, in particular

lim [ (plogp—plogp) (s)™ =0

s—0 T1

Letting s goes to 0 in (5.30), one obtains, for each R,

- 1/t
/ (plog p — plog p) ()" — }—2/ / (plog p — plog p) ud.o(-/R) < 0. (5.31)
T 0 T

In other hand,

i
R

t 1 1 N R—o00
/ / (plogp — plog p) uaxw(-/R)' < WWMHLWI)/ lp1og p — plog pull ya/2(pry —— 0.
s T s

(5.32)

As well, as plogp — plogp € €([0,T], LL(TY)), plogp — plog p(t) € LY(T"). Using the fact that

of 2%, 1 a.e and bounded in L>(T"), one obtains by dominated convergence
/1 (plogp — plog p) ()™ —= /1 (plog p — plog p) (t). (5.33)
T T
Finally gathering (5.31), (5.32) and (5.33) one obtains after letting R to go to infinity

/w (plog p — plog p) (t) < 0.
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APPENDIX

In the following, we state results that we use is the note.

A.1 Liouville’s transport equation

Theorem A.1.1. Let d € N*, Q C R%, I an interval of RT and u: I x Q — R? € € be vector
fields. If V C Q supposed to be adverted by the flow X, of uw. Then, for any f: I x Q — R € €,

one has :
d

@i fy g, S0 = / Of (1, 2) + div( fu)(t, 2)] dz. (A1)

X (V)

Corollary A.1.1. Let d € N*, Q C R, I an interval of RT and u: I x Q@ — R? € € be
vector fields of a fluid of density p. If V. C Q supposed to be adverted by the flow X; of u. For
[:IxQ—ReE, let us define

Then
Y1) = / ol ) (A2)

were f = 8,f +u- V[ is the material deriative of f.

A.2 Gronwall’s lemma

Lemma A.2.1. Let ¢, ¢, y: [a,b] — R three positives and continuous functions satisfying :

Vielall, yt)=olt)+ / (s)y(s)ds (A3)

then

vtelabl ) <o) + /tgp(s)w(s) exp </:¢(T)d7) ds.

a
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Corollary A.2.1. Let 1, y: [a,b] = RT two continuous functions. Assume that there exists ¢ > 0
such that

WEMMy@<c+/¢@MWk
then

Vtela,b y(t) <ecxexp </at¢(s)ds> .

A.3 Some useful results

The following lemma is the compactness lemma of Aubin-Lions similar to the Ascoli-Arzela’s one.

Lemma A.3.1. Let Xy, X and Xy three Banach spaces. Assume that Xy is compactly embedded
X, whereas the embedding of X in Xy just continuous. For 1 < p,q < oo let us define

W ={ue LP((0,T),X1): Ou e LI0,T),X2)}.
1. If p < oo then the embedding of W into LP((0,T), X) is compact.
2. if p=+00 and g < oo the the embedding of W into € ([0,T], X) is compact.
The following result is exercise 4.16 of [3].
Lemma A.3.2. Let 1 < p < oo and (¢"), be a sequence of LP((0,T) x T') such that :
1. (™), is bounded in LP((0,T) x T*);
2. (") — ¢ a.e on (0,T) x T;
Then (™), — ¢ in LP((0,T) x T) .
The following result is the Lemma 5.2 of [18].

Lemma A.3.3. Let ©", Y" converge weakly to p, v, respectively in LP*((0,T), LP*(T')) and in
La((0,T), L=(T")) where 1 < p1,p2 < 00,

1 1 1 1

— b =— =1

P @1 P2 @

Assume in addition that 0,p™ is bounded in L*((0,T), W=™1(T')) for some m € N* and

107+ €) = "l oy rnyy < 0
uniformly in n. Then ™™ converges to @i in sense of distribution.
The following is the Lemma 6.4 of [21].

Lemma A.3.4. Let 2 < < o0, be €([0,1]) N ((0,1] such that |V(t)] < ct= for some positive
constant ¢ and real number X\ such that A < 1,

p=0aeand pec LP((0,T) x T') and u € L*((0,T), H(T"))
and
Oip + 0p(pu) =0 in D'((0,T) x T))

Then,
0ib(p) + 0z (b(p)u) + [ (p) = b(p)] Dy =0 in D'((0,T) x T")).
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The following result is the lemma 3.35 of [21].

Lemma A.3.5. Let Q) a bounded set of R?, d € N*, I an interval in R and P: I — R a non
decreasing function. Let (™), a sequence offunctzons of LY(Q)) with values on I such that :
" = ¢ in L(Q);
P(¢") = P(p) in L'(Q);
P(¢")p = P(p)p in L'(Q);
P(")¢" = P(p)p in L'(Q);
P(p)(¢" =) = 0 in L'(9).

Then P(p)p = P(p)e.

The following result is taken from appendix C of [17].

Definiton A.3.1. Let X be Banach space and I C R an interval. We denote by €I, X —w) the
space of continuous functions on I with values in X equipped with the weak topology.

oI =XebC,X—w)e=VFeX t—(Fol)xxccI)
The following compactness result in €' (I, X — w) follows :

Lemma A.3.6. Let X be separable Banach space and @™ bounded in L*((0,T),X) for some
T > 0. We assume that o™ € €([0,T],Y) where Y is a Banach space such that X — Y, Y’ is
separable and dense in X'. Furthermore, we assume that for all ) € Y', the map t — (¢, p(t))y vy
is uniformly continuous in t € [0,T] and uniformly in n.

Then ¢™ is compact in € ([0,T], X — w)

This result is the lemma 6.15 of [21].
Lemma A.3.7. Let 1 < < o0, 0 € (0,5/4). Assume that the couple (p,u) satisfies :
02006 peLP(0,7) x T N0, T), LA(T'), u € L(0,T), H'(T'))

and satisfies

O + 04(p%u) + (0 — 1)p%0pu = 0 in D'((0,T) x TY).
Then p € €([0,T), LP(T")) for 1 < p < B.
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